Skip to main content

Advertisement

Log in

Does excess iron play a role in breast carcinogenesis? an unresolved hypothesis

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Free iron is a pro-oxidant and can induce oxidative stress and DNA damage. The carcinogenicity of iron has been demonstrated in animal models, and epidemiologic studies have shown associations with several human cancers. However, a possible role of excess body iron stores or of elevated iron intake in breast carcinogenesis has received little attention epidemiologically. We propose that iron overload and the disruption of iron homeostasis with a resulting increase in free iron may contribute to the development of breast cancer, and we summarize the relevant evidence from mechanistic studies, animal experiments, and studies in humans. Over time a high intake of iron can lead to iron overload. Furthermore, body iron stores increase in women following menopause. Reactive oxygen species produced by normal aerobic cellular metabolism can lead to the release of free iron from ferritin. In the presence of superoxide radical and hydrogen peroxide, stored ferric iron (Fe3+) is reduced to ferrous iron (Fe2+), which catalyzes the formation of the hydroxyl radical (*OH). *OH in turn can promote lipid peroxidation, mutagenesis, DNA strand breaks, oncogene activation, and tumor suppressor inhibition, increasing the risk of breast cancer. In addition to its independent role as a proxidant, high levels of free iron may potentiate the effects of estradiol, ethanol, and ionizing radiation—three established risk factors for breast cancer. In order to identify the role of iron in breast carcinogenesis, improved biomarkers of body iron stores are needed, as are cohort studies which assess heme iron intake. Ultimately, it is important to determine whether iron levels in the breast and iron-induced pathology are higher in women who go on to develop breast cancer compared to women who do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Rad Biol Med 20:553–566

    Article  PubMed  CAS  Google Scholar 

  2. Ponka P, Beaumont C, Richardson DR (1998) Function and regulation of transferrin and ferritin. Sem Hematol 35:35–54

    CAS  Google Scholar 

  3. McCord JM (1998) Iron, free radicals, and oxidative injury. Sem Hematol 35:5–12

    CAS  Google Scholar 

  4. Dreosti IE (2001) Zinc and the gene: review. Mutat Res 475:161–167

    PubMed  CAS  Google Scholar 

  5. Reizenstein P (1991) Iron, free radicals and cancer: a review. Med Oncol Tumor Pharmacother 8:229–233

    PubMed  CAS  Google Scholar 

  6. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533:153–171

    PubMed  CAS  Google Scholar 

  7. Sahu SC (1992) Dietary iron and cancer: a review. Environ Carcino Ecotox Revs C10:205–237

    Google Scholar 

  8. Kang D-H (2002) Oxidative stress, DNA damage, and breast cancer. AACN Clin Issues 13:540–549

    Article  PubMed  Google Scholar 

  9. Marnett LJ (2000) Oxyradicals and DNA damage. Carcinogenesis 21:361–370

    Article  PubMed  CAS  Google Scholar 

  10. Castro L, Freeman BA (2001) Reactive oxygen species in human health and disease. Nutrition 17:163–165

    Article  Google Scholar 

  11. Okada S, Hamazaki S, Ebina Y, Li J-L, Midorikawa O (1987) Nephrotoxicity and its prevention by vitamin E on ferric nitrotriacetate-promoted lipid peroxidation. Biochim Biophys Acta 922:28–33

    PubMed  CAS  Google Scholar 

  12. Liehr JG, Jones JS (2001) Role of iron in estrogen-induced cancer. Current Medicinal Chem 8:839–849

    CAS  Google Scholar 

  13. Stevens RG, Beasley RP, Blumberg BS (1986) Iron-binding proteins and risk of cancer in Taiwan. J Natl Cancer Inst 76:605–610

    PubMed  CAS  Google Scholar 

  14. Selby JV, Friedman GD (1988) Epidemiologic evidence of an association between body iron stores and risk of cancer. Int J Cancer 41:677–682

    Article  PubMed  CAS  Google Scholar 

  15. Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS (1994) Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int J Cancer 56:364–369

    Article  PubMed  CAS  Google Scholar 

  16. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakulinen T (1994) Body iron stores and risk of cancer. Int J Cancer 56:379–382

    Article  PubMed  CAS  Google Scholar 

  17. Herrinton LJ, Friedman GD, Baer D, Selby JV (1995) Transferrin saturation and risk of cancer. Am J Epidemiol 142:692–698

    PubMed  CAS  Google Scholar 

  18. Andrews NC, Schmidt PJ (2007) Iron homeostasis. Annu Rev Physiol 69:69–85

    Article  PubMed  CAS  Google Scholar 

  19. Fletcher LM, Halliday JW, Powell LW (1999) Interrelationships of alcohol and iron in liver disease with particular reference to the iron-binding proteins, ferritin and transferrin. J Gastroenterol Hepatol 14:202–214

    Article  PubMed  CAS  Google Scholar 

  20. Leggett BA, Brown NN, Bryant SJ, Duplock L, Powell LW, Halliday JW (1990) Factors affecting the concentrations of ferritin in serum in a healthy Australian population. Clin Chem 36:1350–1355

    PubMed  CAS  Google Scholar 

  21. Malins DC, Haimanot R (1991) Major alterations in the nucleotide structure of DNA in cancer of the female breast. Cancer Res 51:5430–5432

    PubMed  CAS  Google Scholar 

  22. Malins DC, Holmes EH, Polissar NL, Gunselman SJ (1993) The etiology of breast cancer: characteristic alterations in *OH radical induced DNA base lesions during carcinogenesis with potential for evaluating incidence risk. Cancer 71:3036–3043

    Article  PubMed  CAS  Google Scholar 

  23. Malins DC, Polissar NL, Gunselman SJ (1996) Progression of human breast cancers to the metastatic state is linked to *OH radical induced DNA damage. Proc Natl Acad Sci USA 93:2557–2563

    Article  PubMed  CAS  Google Scholar 

  24. Kumar K, Thangaraju M, Sachdanandam P (1991) Changes observed in antioxidant system in the blood of postmenopausal women with breast cancer. Biochem Int 25:371–380

    PubMed  CAS  Google Scholar 

  25. Huang Y-L, Sheu J-Y, Lin T-H (1999) Association between oxidative stress and changes in trace elements in patients with breast cancer. Clinical Biochem 32:131–136

    Article  CAS  Google Scholar 

  26. Ray G, Batra S, Shukla NK et al (2000) Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res Treat 59:163–170

    Article  PubMed  CAS  Google Scholar 

  27. Gonenc A, Ozkan Y, Torun M, Simsek B (2001) Plasma malonaldehyde (MDA) levels in breast and lung cancer patients. J Clin Pharm Ther 26:141–144

    Article  PubMed  CAS  Google Scholar 

  28. Boyd NF, McGuire V (1990) Evidence of lipid peroxidation in premenopausal women with mammographic dysplasia. Cancer Lett 50:31–37

    Article  PubMed  CAS  Google Scholar 

  29. Boyd NF, McGuire V (1991) The possible role of lipid peroxidation in breast cancer risk. Free Radic Biol Med 10:185–190

    Article  PubMed  CAS  Google Scholar 

  30. Wang M, Dhingra K, Hittelman WN, Liehr JG, de Andrade M, Li D (1996) Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol Biomarkers Prev 5:705–710

    PubMed  CAS  Google Scholar 

  31. Rossner P, Gammon MD, Terry MB et al (2006) Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15:639–644

    Article  PubMed  CAS  Google Scholar 

  32. Punnonen K, Ahotupa M, Asaishi K, Hyoty M, Kudo R, Punnonen R (1994) Antioxidant enzyme activities and oxidative stress in human breast cancer. J Cancer Res Clin Oncol 120:374–377

    Article  PubMed  CAS  Google Scholar 

  33. Good MF, Powell LW, Halliday JW (1988) Iron status and cellular immune competence. Blood Rev 2:43–49

    Article  PubMed  CAS  Google Scholar 

  34. Walker EM, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30:354–365

    PubMed  CAS  Google Scholar 

  35. de Sousa M (1989) The immunology of iron overload. In: de Sousa M, Brock JH (eds) Iron in immunity, cancer and inflammation. J. Wiley, Chichester, pp 247–258

    Google Scholar 

  36. Djeha A, Brock JH (1992) Effect of transferrin, lactoferrin and chelated iron on human T-lymphocytes. Br J Haematol 80:235–241

    PubMed  Google Scholar 

  37. Weinberg JB, Hibbs JB Jr (1977) Endocytosis of red blood cells or hemoglobin by activated macrophages inhibits their tumoricidal effect. Nature 269:245–247

    Article  PubMed  CAS  Google Scholar 

  38. Milman N, Byg K-E, Ovesen L, Kirchhoff M, Jürgensen KS-L (2003) Iron status in Danish women, 1984–1994: a cohort comparison of changes in iron stores and the prevalence of iron deficiency and iron overload. Eur J Haematol 71:51–61

    Article  PubMed  CAS  Google Scholar 

  39. Fleming DJ, Jacques PF, Tucker KL et al (2001) Iron status of the free-living, elderly Framingham Heart Study cohort: an iron-replete population with a high prevalence of elevated iron stores. Am J Clin Nutr 73:638–646

    PubMed  CAS  Google Scholar 

  40. Liu J-M, Hankinson SE, Stampfer MJ, Rifai N, Willett WC, Ma J (2003) Body iron stores and their determinants in healthy postmenopausal women. Am J Clin Nutr 78:1160–1167

    PubMed  CAS  Google Scholar 

  41. Beutler E (1998) Targeted disruption of the HFE gene. Proc Natl Acad Sci USA 95:2033–2034

    Article  PubMed  CAS  Google Scholar 

  42. Wright RM, McManaman JL, Repine JE (1999) Alcohol-induced breast cancer: a proposed mechanism. Free Rad Biol Med 26:348–354

    Article  PubMed  CAS  Google Scholar 

  43. Thompson HJ, Kennedy K, Witt M, Juzefyk J (1991) Effect of dietary iron deficiency or excess on the induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis 12:111–114

    Article  PubMed  CAS  Google Scholar 

  44. Diwan BA, Kasprzak KS, Anderson LM (1997) Promotion of dimethylbenz[a]anthracene-initiated mammary carcinogenesis by iron in female Sprague-Dawley rats. Carcinogenesis 18:1757–1762

    Article  PubMed  CAS  Google Scholar 

  45. Singh M, Lu J, Briggs SP, McGinley JN, Haegele AD, Thompson HJ (1994) Effect of excess dietary iron on the promotion stage of 1-methyl-1-nitrosourea-induced mammary carcinogenesis: pathogenetic characteristics and distribution of iron. Carcinogenesis (Lond.) 15:1567–1570

    Article  CAS  Google Scholar 

  46. Hrabinski D, Hertz JL, Tantillo C, Berger V, Sherman AR (1995) Iron repletion attenuates the protective effects of iron deficiency in DMBA-induced mammary tumors in rats. Nutr Cancer 24:133–142

    Article  PubMed  CAS  Google Scholar 

  47. Hann HW, Stahlhut MW, Blumberg BS (1988) Iron nutrition and tumor growth: decreased tumor growth in iron deficient mice. Cancer Res 48:4168–4170

    PubMed  CAS  Google Scholar 

  48. Wang F, Elliott RL, Head JF (1999) Inhibitory effect of deferoxamine mesylate and low iron diet on the 13762NF rat mammary adenocarcinoma. Anticancer Res 19:445–450

    PubMed  CAS  Google Scholar 

  49. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15:572–578

    Article  PubMed  CAS  Google Scholar 

  50. Conte D, Narindrasorasak S, Sarkar B (1996) In vivo and in vitro iron-replaced zinc finger generates free radicals and causes DNA damage. J Biol Chem 271:5125–5130

    Article  PubMed  CAS  Google Scholar 

  51. Oteiza PI, Olin KL, Fraga CG, Keen CL (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125:823–829

    PubMed  CAS  Google Scholar 

  52. Ho E, Courtemanche C, Ames BN (2003) Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J Nutr 133:2543–2548

    PubMed  CAS  Google Scholar 

  53. Ho E, Ames BN (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA 99:16770–16775

    Article  PubMed  CAS  Google Scholar 

  54. Weinberg ED (1996) The role of iron in cancer. Europ J Cancer Prev 5:19–36

    CAS  Google Scholar 

  55. Weinstein RE, Bond BH, Silberberg BK (1982) Tissue ferritin concentration in carcinoma of the breast. Cancer 50:2406–2409

    Article  PubMed  CAS  Google Scholar 

  56. Elliott RL, Elliott MC, Wang F, Head JF (1993) Breast carcinoma and the role of iron metabolism: a cytochemical, tissue culture, and ultrastructural study. Ann NY Acad Sci 698:159–166

    Article  PubMed  CAS  Google Scholar 

  57. Faulk WP, Hsi B-L, Stevens PJ (1980) Transferrin and transferrin receptors in carcinoma of the breast. Lancet 2:390–392

    PubMed  CAS  Google Scholar 

  58. Rossiello R, Carriero MV, Giordano GG (1984) Distribution of ferritin, transferrin and lactoferrin in breast carcinoma tissue. J Clin Pathol 37:51–55

    Article  PubMed  CAS  Google Scholar 

  59. Marcus DM, Zinberg N (1975) Measurement of serum ferritin by radioimmunoassay: results in normal individuals and patients with breast cancer. J Natl Cancer Inst 55:791–795

    PubMed  CAS  Google Scholar 

  60. Ionescu JG, Novotny J, Stejskal V, Latsch A, Blaurock-Busch E, Eisenmann-Klein M (2006) Increased levels of transition metals in breast cancer tissue. Neuroendocrin Lett 27(1):36–39

    Article  CAS  Google Scholar 

  61. Cavalieri E, Chakravarti D, Guttenplan J et al (2006) Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochimica et Biophysica Acta 1766:63–78

    PubMed  CAS  Google Scholar 

  62. Smith-Warner SA, Spiegelman D, Yaun SS et al (1998) Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA 18: 279:535–540

    Google Scholar 

  63. Ioannou GN, Dominitz JA, Weiss NS, Heagerty PJ, Kowdley KV (2004) The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 126:1293–1301

    Article  PubMed  CAS  Google Scholar 

  64. Whitfield JB, Zhu G, Heath AC, Powell LW, Martin NG (2001) Effects of alcohol consumption on indices of iron stores and iron stores on alcohol intake markers. Alcohol Clin Exp Res 25:1037–1045

    Article  PubMed  CAS  Google Scholar 

  65. Jacques PF, Sulsky S, Hartz SC, Russell RM (1989) Moderate alcohol intake and nutritional status in nonalcoholic elderly subjects. Am J Clin Nutr 50:875–883

    PubMed  CAS  Google Scholar 

  66. Ron E (1998) Ionizing radiation and cancer risk: evidence from epidemiology. Radiat Res 150 (Suppl.):S30–S41

    Google Scholar 

  67. Stevens RG, Morris JE, Anderson LE (2000) Hemochromatosis heterozygotes may constitute a radiation-sensitive subpopulation. Radiat Res 153:844–847

    Article  PubMed  CAS  Google Scholar 

  68. Böing H, Martinez L, Frentzel-Beyme R, Oltersdorf U (1985) Regional nutritional pattern and cancer mortality in the Federal Republic of Germany. Nutr Cancer 7:121–130

    PubMed  Google Scholar 

  69. Chen J, Geissler C, Parpia B, Li J, Campbell CT (1992) Antioxidant status and cancer mortality in China. Int J Epidemiol 21:625–635

    Article  PubMed  CAS  Google Scholar 

  70. Cade J, Thomas E, Vail A (1998) Case–control study of breast cancer in south east England: nutritional factors. J Epidemiol Commun Health 52:105–110

    Article  CAS  Google Scholar 

  71. Adzersen K-H, Jess P, Freivogel KW, Gerhard I, Bastert G (2003) Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: a case–control study in Germany. Nutr Cancer 46:131–137

    Article  PubMed  CAS  Google Scholar 

  72. Garland M, Morris JS, Colditz GA et al (1996) Toenail trace element levels and breast cancer: a prospective study. Am J Epidemiol 144:653–660

    PubMed  CAS  Google Scholar 

  73. Lee D-H, Anderson KE, Harnack LJ, Jacobs DR Jr (2004) Dietary iron intake and breast cancer: The Iowa Women’s Heath Study. Proc Amer Assoc Cancer Res 45

  74. Kabat GC, Miller AB, Jain M, Rohan TE (2007) Iron and heme iron intake and risk of breast cancer: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 16:1306–1308

    Google Scholar 

  75. Cui Y, Vogt S, Olson N, Glass AG, Rohan TE (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev 16:1682–1685. doi: 10.1158/1055-9965.EPI-07-0187

    Google Scholar 

  76. Bradbear RA, Bain C, Siskind V et al (1985) Cohort study of internal malignancy in genetic hemochromatosis and other chronic nonalcoholic liver diseases. J Natl Cancer Inst 75:81–84

    PubMed  CAS  Google Scholar 

  77. Niederau C, Fischer R, Sonnenberg A, Stremmel W, Trampisch HJ, Strohmeyer G (1985) Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. New Engl J Med 313:1256–1262

    Google Scholar 

  78. Hunter D. (1990) Biochemical indicators of dietary intake. In: Willett WC (Ed), Nutritional epidemiology, New York: Oxford University Press. pp 143–216

    Google Scholar 

  79. Tappel A (2007) Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med hypoth 68:562–564

    Article  CAS  Google Scholar 

  80. Lee HP, Gourley L, Duffy SW, Esteve J, Lee J, Day NE (1991) Dietary effects on breast cancer risk in Singapore. Lancet 337:1197–1200

    Article  PubMed  CAS  Google Scholar 

  81. Toniolo P, Riboli E, Shore RE, Pasternack BS (1994) Consumption of meat, animal products, protein, and fat and risk of breast cancer: a prospective cohort study in New York. Epidemiology 5:391–397

    Article  PubMed  CAS  Google Scholar 

  82. Cho E, Chen WY, Hunter DJ et al (2006) Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med. 166:2253–2259

    Article  PubMed  Google Scholar 

  83. Hebert JR, Rosen A (1996) Nutritional, socioeconomic, and reproductive factors in relation to female breast cancer mortality: findings from a cross-national study. Cancer Detect Prev 20:234–244

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey C. Kabat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabat, G.C., Rohan, T.E. Does excess iron play a role in breast carcinogenesis? an unresolved hypothesis. Cancer Causes Control 18, 1047–1053 (2007). https://doi.org/10.1007/s10552-007-9058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-007-9058-9

Keywords

Navigation