Skip to main content

Advertisement

Log in

Dietary phytoestrogen intake—lignans and isoflavones—and breast cancer risk (Canada)

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

To evaluate whether phytoestrogen intake is associated with reduced breast cancer risk, using a novel phytoestrogen database.

Methods

Population-based breast cancer cases aged 25–74 years (diagnosed 2002–2003) were identified using Ontario Cancer Registry (n = 3,063) and controls (n = 3,430) were an age-stratified random sample of women identified through random digit dialing. An epidemiologic and Block food frequency questionnaire—expanded to include phytoestrogen-containing foods—was mailed to all subjects. The recently published Ontario phytoestrogen database was applied to FFQ responses to estimate intake. Multivariate logistic regression provided odds ratio (OR) estimates, while controlling for confounders.

Results

Among all women, lignan intake was associated with a reduced breast cancer risk (Q5 vs. Q1 MVOR: 0.81, 95% CI: 0.65, 0.99); however, following stratification by BMI, this reduction in risk was statistically significant only among overweight (BMI > 25) women. Total phytoestrogen intake was also associated with a risk reduction among overweight women only. Among pre-menopausal women, total phytoestrogen intake was associated with a significant reduction in breast cancer risk among overweight women only (Q5 vs. Q1 MVOR: 0.51, 95% CI: 0.30, 0.87). Among post-menopausal women, no statistically significant association was observed between breast cancer risk and isoflavones or lignans.

Conclusion

Lignan intake may be associated with reduced breast cancer risk among pre-menopausal women, and our data suggest BMI modifies this association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N (2006) Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans and coumestan. Nutr Cancer 54:184–201

    PubMed  CAS  Google Scholar 

  2. Horn-Ross P, Lee M, John EM, Koo J (2000) Sources of phytoestrogen exposure among non-Asian women in California, USA. Cancer Causes Control 11:299–302

    PubMed  CAS  Google Scholar 

  3. Milder I, Feskens E, Arts I, de Mesquita H, Hollman P, Kromhout D (2005) Intake of the plant lignans Secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women. J Nutr 135:1202–1207

    PubMed  CAS  Google Scholar 

  4. Gallo D, Giacomelli S, Cantelmo F et al (2001) Chemoprevention of DMBA-induced mammary cancer in rats by dietary soy. Breast Cancer Res Treat 69:153–164

    PubMed  CAS  Google Scholar 

  5. Kim H, Hall P, Smith M, Kirk M, Prasain J, Barnes S, Grubbs C (2004) Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J Nutr 134(supp12):3445S–3452S

    PubMed  CAS  Google Scholar 

  6. Chen J, Thompson L (2003) Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat 80:163–170

    PubMed  CAS  Google Scholar 

  7. Thompson L, Seidl M, Rickard S, Orcheson L, Fong H (1996) Antitumorigenic effect of a mammalian lignan precursor from flaxseed. Nutr Cancer 26:159–165

    PubMed  CAS  Google Scholar 

  8. Saarinen N, Huovinen R, Warri A, Makela S et al (2002) Enterolactone inhibits the growth of 7,12-dimethylbenzanthrene-induced mammary carcinomas in the rat. Mol Cancer Ther 1:869–876

    PubMed  CAS  Google Scholar 

  9. Wang L, Chen J, Thomson Lu (2005) The inhibitory effect of flazseed on the growth and metastasis of estrogen receptor negative human breast cancer xenografts is attributed to both its lignan and oil components. Int J Cancer 116:793–798

    PubMed  CAS  Google Scholar 

  10. Power K, Saarinen N, Chen J, Thompson L (2006) Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein do not promote the growth of MCF-7 xenografts in ovariectomized athymic mice. Int J Cancer 118:1316–1320

    PubMed  CAS  Google Scholar 

  11. Ju Y, Allred K, Allred C, Helferich W (2006) Genistein stimulates growth of human breast cancer cells in a novel postmenopausal animal model with low plasma estradiol concentrations. Carcinogenesis 27:1292–1299

    PubMed  CAS  Google Scholar 

  12. Jungestrom M, Thompson L, Dabrosin C (2007) Flaxseed and its lignans inhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res 13:1061–1067

    Google Scholar 

  13. Parkin D, Whelan S, Ferley J, Raymond L, Young J (1997) Cancer incidence in five continents. International Agency for Research on Cancer (IARC), Lyon, France

  14. De Kleijn M, van der Schouw Y, Wilson P, Adlercreutz H, Mazur W, Grobbee D, Jacques P (2001) Intake of dietary phytoestrogens is low in postmenopausal women in the United States: The Framingham Study. J Nutr 131:1826–1832

    PubMed  Google Scholar 

  15. Ingram D, Sanders K, Kolybaba M, Lopez D (1997) Case–control study of phyto-oestrogens and breast cancer. Lancet 350:990–994

    PubMed  CAS  Google Scholar 

  16. Zheng W, Dai Q, Custer L, Shu X, Wen WQ, Jin F, Franke A (1999) Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 8:35–40

    PubMed  CAS  Google Scholar 

  17. Hirose K, Tajima K, Hamajima N, Inoue M, Takezaki T, Kuroishi T, Yoshida M, Tokudome S (1995) A large-scale, hospital-based case–control study of risk factors of breast cancer according to menopausal status. Jpn J Cancer Res 86:146–154

    PubMed  CAS  Google Scholar 

  18. Pietinen P, Stumpf K, Mannisto S, Kataja V, Uusitupa M, Adlercreutz H (2001) Serum enterolactone and risk of breast cancer: a case–control study in eastern Finland. Cancer Epidemiol Biomarkers Prev 10:339–344

    PubMed  CAS  Google Scholar 

  19. McCann S, Moysich K, Freudenheim J, Ambrosone CB, Shields PG (2002) The risk of breast cancer associated with dietary lignans differs by CYP17 genotype in women. J Nutr 132:3036–3041

    PubMed  CAS  Google Scholar 

  20. McCann S, Muti P, Vito D, Edge S, Trevisan M, Freudenheim J (2004) Dietary lignan intakes and risk of pre- and post-menopausal breast cancer. Int J Cancer 111:440–443

    PubMed  CAS  Google Scholar 

  21. Wu A, Ziegler R, Horn-Ross P, Nomura A, West D, Kolonel L, Rosenthal J, Hoover R, Pike M (1996) Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev 5:901–906

    PubMed  CAS  Google Scholar 

  22. Wu A, Wan P, Hankin J, Tseng C, Yu M et al (2002) Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 2002;23:1491–1496

    PubMed  CAS  Google Scholar 

  23. Dai Q, Shu X, Jin F, Potter J, Kushi L et al (2001) Population-based case–control study of soyfood intake and breast cancer risk in Shanghi. Br J Cancer 85:372–378

    PubMed  CAS  Google Scholar 

  24. Dai Q, Franke A, Jin F, Shu X, Hebert J, Custer L, Cheng J, Gao Y, Shang W (2002) Urinary excretion of phytoestrogens and risk of breast cancer among Chinese women in Shanghai. Cancer Epidemiol Biomarkers Prev 11:815–821

    PubMed  CAS  Google Scholar 

  25. Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S (2003) Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst 95:906–913

    PubMed  CAS  Google Scholar 

  26. Linseisen J, Piller R, Hermann S, Chang-Claude J (2004) Dietary phytoestrogen intake and premenopausal breast cancer risk in a German case–control study. Int J Cancer 110:284–290

    PubMed  CAS  Google Scholar 

  27. Piller R, Chang-Claude J, Linseisen J (2006) Plasma enterolactone and genistein and the risk of premenopausal breast cancer. Eur J Cancer Prev 15:225–232

    PubMed  CAS  Google Scholar 

  28. Fink B, Steck S, Wolff M, Britton J, Kabat G, Schroeder J, Teitelbaum S, Neugut A, Gammon M (2006) Dietary flavonoid intake and breast cancer risk among women on Long Island. Am J Epidemiol 165:514–523

    PubMed  Google Scholar 

  29. Touillaud M, Thiebaut A, Niravong M, Boutron-Ruault M.-C., Clavel-Chapelon F (2006) No association between dietary phytoestrogens and risk of premenopausal breast cancer risk in a French cohort study. Cancer Epidemiol Biomarkers Prev 15:2574–2576

    PubMed  CAS  Google Scholar 

  30. Verheus M, vanGils C, Keinan-Boker L, Grace P, Binghan S, Peeters P (2007) Plasma phytoestrogens and subsequent breast cancer risk. J Clin Oncol 25:648–655

    PubMed  CAS  Google Scholar 

  31. Touillaud M, Thiebaut A, Fournier A, Niravong M, Boutron-Ruault M, Clavel-Chapelon F (2007) Lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99:475–486

    PubMed  CAS  Google Scholar 

  32. Horn-Ross P, John E, Lee M, Stewart S, Koo J, Sakoda L, Shiau A, Goldstein J, Davis P, Perez-Stable E (2001) Phytoestrogen consumption and breast cancer risk in a multiethnic population. Am J Epidemiol 154:434–441

    PubMed  CAS  Google Scholar 

  33. Horn-Ross P, Hoggart K, West D, Krone M, Stewart S et al (2002) Recent diet and breast cancer risk: the California Teachers Study (USA). Cancer Causes Control 13:407–415

    PubMed  Google Scholar 

  34. Keinan-Boker L, van Der Schouw Y, Grobbee D, Peeters P (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79:282–288

    PubMed  CAS  Google Scholar 

  35. den Tonkelaar I, Keinan-Boker L, Vant Veer P, Arts C, Adlercreutz H, Thijssen J, Peeters P (2001) Urinary phytoestrogens and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:223–228

    Google Scholar 

  36. Yuan J, Wang Q, Ross R, Henderson B, Yu M (1995) Diet and breast cancer in Shanghai and Tianjin, China. Br J Cancer 71:1353–1358

    PubMed  CAS  Google Scholar 

  37. Key T, Sharp G, Appleby P, Beral V, Goodman M, Soda M, Mabuchi K (1999) Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki, Japan. Br J Cancer 81:1248–1256

    PubMed  CAS  Google Scholar 

  38. Grace P, Taylor J, Low Y, Luben R, Mulligan A, Botting N, Dowsett M, Welch A, Khaw K, Wareham N, Day N, Bingham S (2004) Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to breast cancer risk in European Prospective Investigation of Cancer and nutrition-Norfolk. Cancer Epidemiol Biomarks Prev 13:698–708

    CAS  Google Scholar 

  39. Zeleniuch-Jacquotte A, Aldercreutz H, Shore R, Koenig K, Kato I, Arslan A, Toniolo P (2004) Circulating enterolactone and risk of breast cancer: a prospective study in New York. Br J Cancer 9:99–105

    Google Scholar 

  40. Messina M, Nagata C, Wu A (2006) Estimated Asian adult soy protein and isoflavone intakes. Nutr Cancer 55:1–12

    PubMed  CAS  Google Scholar 

  41. Mulligan A, Welch A, McTaggart A, Bhaniani A, Bingham S (2007) Intakes and sources of soya foods and isoflavones in a UK population cohort (EPIC-Norfolk). Eur J Clin Nutr 61:248–254

    PubMed  CAS  Google Scholar 

  42. Trock B, Hilakivi-Clarke L, Clarke R (2006) Meta-analysis of soy intake and breast cancer risk. JNCI 98:459–471

    PubMed  CAS  Google Scholar 

  43. Reinli K, Block G (1996) Phytoestrogen content of foods—a compendium of literature values (review). Nutr Cancer 26:123–148

    PubMed  CAS  Google Scholar 

  44. USDA. US Department of Agriculture, Agricultural Research Service (2007) USDA-Iowa State University Database on the Isoflavone Content of Foods, Release 1.4 - 2007. Nutrient Data Laboratory Web site: http://www.ars.usda.gov/nutrientdata

  45. Mazur W, Duke J, Wahala K, Rasku S, Adlercreutz H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects on humans. J Nutr Biochem 9:193–200

    CAS  Google Scholar 

  46. Liggins J, Bluck L, Runswick S, Atkinson C, Coward WA et al (2000) Daidzein and genistein content of vegetables. Br J Nutr 84:717–725

    PubMed  CAS  Google Scholar 

  47. Liggins J, Bluck L, Runswick S, Atkinson C, Coward W, Bingham S (2000) Daidzein and genistein content of fruits and nuts. J Nutr Biochem 11:326–331

    PubMed  CAS  Google Scholar 

  48. Mazur W, Adlercreutz H (2000) Overview of naturally occurring endocrine-active substances in the human diet in relation to human health. Nutrition 16:654–658

    PubMed  CAS  Google Scholar 

  49. Milder I, Arts I, van de Putte B, Venema D, Hollman P (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402

    PubMed  CAS  Google Scholar 

  50. Nurmi T, Heinonen S, Mazur W, Deyama T, Nishibe S, Aldercreutz H (2003) Lignans in selected wines. Food Chem 83:303–309

    CAS  Google Scholar 

  51. Horn-Ross P, Barnes S, Lee M, Coward L, Mandel J, Koo J, John E, Smith M (2000) Assessing phytoestrogen exposure in epidemiologic studies: development of a database (United States). Cancer Causes Control 11:289–298

    PubMed  CAS  Google Scholar 

  52. Mazur W, Wahala K, Rasku S, Salakka A, Hase T, Adlercreutz H (1998) Lignan and isoflavonoid concentrations in tea and coffee. Br J Nutr 79:37–45

    PubMed  CAS  Google Scholar 

  53. Thompson LU, Robb P, Serraino M, Cheung F (1991) Mammalian lignan production from various foods. Nutr Cancer 16:43–52

    Article  PubMed  CAS  Google Scholar 

  54. Boucher B, Cotterchio M, Kreiger N, Nadalin V, Block T, Block G (2006) Validity and reliability of the Block98 food-frequency questionnaire in a sample of Canadian women. Public Health Nutr 9:84–93

    PubMed  Google Scholar 

  55. Holowaty E (2005) Cancer Care Ontario. Personal Communication

  56. Subar A, Thompson F, Kipnis V et al (2001) Comparative validation of the Block, Willett and National Cancer Institute food frequency questionnaires: the eating at America’s Table Study. Am J Epidemiol 154:1089–1099

    PubMed  CAS  Google Scholar 

  57. Gilbart E, Kreiger N (1998) Improvement in cumulative response rates following implementation of a financial incentive. Am J Epidemiol 148:97–99

    PubMed  CAS  Google Scholar 

  58. Mazur W (1998) Phytoestrogen content in foods. Baillieres Clin Endocrinol Metab 12:729–742

    PubMed  CAS  Google Scholar 

  59. Mazur W, Uehara M, Wahala K, Adlercreutz H (2000) Phyo-oestrogen content of berries, and plasma concentrations and urinary excretion of enterolactone after a single strawberry-meal in human subjects. Br J Nutr 83:381–387

    PubMed  CAS  Google Scholar 

  60. Meagher L, Beecher G (2000) Assessment of data on the lignan value of foods. J Food Compost Anal 13:935–947

    CAS  Google Scholar 

  61. Lapcik O, Hill M, Hampl R, Wahala K, Adlercreutz H (1998) Identification of isoflavonoids in beer. Steroids 63:14–20

    PubMed  CAS  Google Scholar 

  62. Boker L, Van der Schouw Y, De Kleijn M, Jacques P, Grobbee D, Peeters P (2002) Intake of dietary phytoestrogens by Dutch women. J Nutr 132:1319–1328

    PubMed  CAS  Google Scholar 

  63. Horn-Ross P (2001) Assessing phytoestrogen exposure via a food-frequency questionnaire (letter). Cancer Causes Control 12:477–478

    PubMed  CAS  Google Scholar 

  64. Block G, Hartman A, Dresser C, Carroll M, Gannon J, Gardner L (1986) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124:453–469

    PubMed  CAS  Google Scholar 

  65. Block G (2001) Invited commentary: another perspective on food frequency questionnaires. Am J Epidemiol 154:1103–1104

    PubMed  CAS  Google Scholar 

  66. Hosmer D, Lemeshow S (2000) Applied logistic regression. John Wiley & Sons Inc., New York, NY

    Google Scholar 

  67. Maldonado G, Greenland S (1993) Simulation study of confounder-selection strategies. Am J Epidemiol 138:923–936

    PubMed  CAS  Google Scholar 

  68. Colditz G, Atwood K, Emmons K et al (2000) Harvard report on cancer prevention, vol 4: Harvard cancer risk index. Cancer Causes Control 11:477–488

    PubMed  CAS  Google Scholar 

  69. Greenland S (1989) Modeling and variable selection in epidemiologic analysis. Am J Public Health 79:340–349

    Article  PubMed  CAS  Google Scholar 

  70. Liggins J, Mulligan A, Runswick S, Bingham SA (2002) Daidzein and genistein content of cereals. Eur J Clin Nutr 56:961–966

    PubMed  CAS  Google Scholar 

  71. Mazur W, Fotsis T, Wahala K, Ojala S, Salakka A, Aldercreutz H (1996) Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal Biochem 233:169–180

    PubMed  CAS  Google Scholar 

  72. Pillow P, Duphorne C, Chang S, Contois J, Strom S et al (1999) Development of a database for assessing dietary phytoestrogen intake. Nutr Cancer 33:3–19

    PubMed  CAS  Google Scholar 

  73. Silva dosSantos I, Mangtani P, McCormack V, Bhakta D, McMichael A, Sevak L (2004) Phytoestrogen intake and breast cancer risk in South Asian women in England: findings from a population-based case–control study. Cancer Causes Control 15:805–818

    Google Scholar 

  74. McCann S, Kulkarni S, Trevisan M, Vito D, Nie J, Edge S, Muti P, Freudenheim J (2006) Dietary lignan intakes and risk of breast cancer by tumor estrogen receptor status. Breast Cancer Res Treat 99:309–311

    PubMed  CAS  Google Scholar 

  75. Bosetti C, Spertini L, Parpinel M, Gnagnarella P, Lagiou P et al (2005) LaVecchia C. Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev 14:805–808

    PubMed  CAS  Google Scholar 

  76. Olsen A, Knudsen K, Thomsen B, Loft S, Stripp C, Overvad K, Moller S, Tjonneland A (2004) Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol Biomarkers Prev 13:2084–2089

    PubMed  CAS  Google Scholar 

  77. Kilkkinen A, Virtamo J, Vartianen E, Sankila R, Adlercreutz H, Pietinen P (2004) Serum enterolactone concentration is not associated with breast cancer risk in a nested case–control study. Int J Cancer 108:277–280

    PubMed  CAS  Google Scholar 

  78. Hulten K, Winkvist A, Lenner P, Johansson R, Aldercreutz H, Hallmans G (2002) An incident case-referent study on plasma enterolactone and breast cancer risk. Eur J Nutr 4:168–176

    Google Scholar 

  79. Dai Q, Franke A, Yu H, Shu X, Jin F, Hebert J, Custer L, Gao Y, Zheng W (2003) Urinary phytoestrogen excretion and breast cancer risk: evaluating potential effect modifiers endogenous estrogens and anthropometrics. Cancer Epidemiol Biomarkers Prev 12:497–502

    PubMed  CAS  Google Scholar 

  80. Nelson L, Bulun S (2001) Estrogen production and action. J Am Acad Dermatol 45(3S):S116–S124

    PubMed  CAS  Google Scholar 

  81. Lukanova A, Lundin E, Zeleniuch-Jacquotte A, Muti P, Mure A, Rinaldi S et al (2004) Body mass index, circulating levels of sex-steroid hormones, IGF-1 and IGF-binding protein-3;a cross sectional study in healthy women. Eur J Endocrinol 150:161–171

    PubMed  CAS  Google Scholar 

  82. Setchell K (1998) Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am J Clin Nutrition 68:1333S–1346S

    CAS  Google Scholar 

  83. Han D, Tachibana H, Yamada K (2001) Inhibition of environmental estrogen-induced proliferation of human breast carcinoma MSF-7 cells by flavonoids. In Vitro Cell Dev Biol Anim 37:275–282

    PubMed  CAS  Google Scholar 

  84. Messina M, McCaskill-Stevens W, Lampe J (2006) Addressing the soy and breast cancer relationship: review, commentary and workshop proceedings. J Natl Cancer Inst 98:1275–1284

    Article  PubMed  Google Scholar 

  85. Shu X, Jin F, Dai Q et al (2001) Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 10:483–488

    PubMed  CAS  Google Scholar 

  86. Thanos J, Cotterchio M, Boucher B, Kreiger N, Thompson L (2006) Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 17:1253–1261

    PubMed  Google Scholar 

  87. Schedin P, Byers T (1997) Adolescent diet and the risk of breast cancer in adulthood: a role for vitamin A? Nutrition 13:924–925

    PubMed  CAS  Google Scholar 

  88. Lamartiniere C, Murrill W, Manzolillo P et al (1998) Genistein alters the ontogeny of mammary gland development and protects against chemically-induced mammary cancer in rats. Exp Biol Med (Maywood) 217:358–364

    CAS  Google Scholar 

  89. Tou J, Thompson L (1999) Exposure to flaxseed or its lignan component during different developmental stages influences rat mammary gland structures. Carcinogenesis 20:1831–1835

    PubMed  CAS  Google Scholar 

  90. Jin Z, MacDonald R (2002) Soy isoflavones increase latency of spontaneous mammary tumors in mice. J Nutr 132:3186–3190

    PubMed  CAS  Google Scholar 

  91. Krazeisen A, Breitling R, Moller G, Adamski J (2001) Phytoestrogens inhibit 17B-hydroxysteroid dehyrogenase type 5. Mol Cell Endocrinol 171:151–162

    PubMed  CAS  Google Scholar 

  92. Fotsis T, Pepper M, Aldercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Nat Acad Sci USA 90:2690–2694

    PubMed  CAS  Google Scholar 

  93. Dave B, Eason R, Till S, Geng Y, Velarde M, Badger T, Simmen R (2005) The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis 26:1793–1803

    PubMed  CAS  Google Scholar 

  94. Anderson J, Anthony M, Messina M, Garner S (1999) Effects of phyto-oestrogens on tissues. Nutr Res Rev 12:75–116

    CAS  PubMed  Google Scholar 

  95. Strauss L, Santti R, Saarinen N, Streng T, Joshi S, Makela S (1998) Dietary phytoestrogens and their role in hormonally dependent disease. Toxicol Lett 102–102:349–354

    Google Scholar 

  96. Barnes S, Boersma B, Patel R, Kirk M, Darley-Usmar V, Kim H, Xu J (2000) Isoflavonoids and chronic disease: mechanisms of action. BioFactors 12:209–215

    PubMed  CAS  Google Scholar 

  97. Haggans C, Hutchins A, Olson B et al (1999) Effect of flaxseed consumption on urinary estrogen metabolites in postmenopausal women. Nutr Cancer 33:188–195

    PubMed  CAS  Google Scholar 

  98. Mueller S, Simon S, Chae K, Metzler M, Korach K (2004) Phytoestrogens and their human metabolites show distinct agonist and antagonist properties on ER-alpha and ER-beta in human cells. Toxicol Sci 80:14–25

    PubMed  CAS  Google Scholar 

  99. Enmark E, Gustafsson J (1999) Oestrogen receptors: an overview. J Inter Med 246:133–138

    CAS  Google Scholar 

  100. Kuiper G, Lemmen J, Carlsson B, Corton J, Safe S, van der Saag P, van der Burg B, Gustafsson J (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139(10):4252–4263

    PubMed  CAS  Google Scholar 

  101. Petersson K, Delauunay F, Gustafsson JA (2000) Estrogen receptor beta acts as dominant regulator of estrogen signaling. Oncogene 19:4970–4978

    Google Scholar 

  102. An J, Tzagarakis-Foster C, Scharschmidt T, Lomri N, Leitman D (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 21:17808–17814

    Google Scholar 

  103. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 26:7632–7635

    Google Scholar 

  104. Kumar N, Cantor A, Allen K, Riccardi D, Cox C (2002) The specific role of isoflavones on estrogen metabolism in premenopausal women. Cancer 94:1166–1174

    PubMed  CAS  Google Scholar 

  105. Xu X, Duncan A, Merz B, Kurzer M (1998) Effects of soy isoflavones on estrogen and phytoestrogen metabolism in premenopausal women. Cancer Epidemiol Biomarkers Prev 7:1101–1108

    PubMed  CAS  Google Scholar 

  106. Martin M, Haourigui M, Pelissero C, Benassayag C, Nunez E (1996) Interactions between phytoestrogens and human sex steroid binding protein. Life Sci 58:429–436

    PubMed  CAS  Google Scholar 

  107. Brooks JD, Thompson LU (2005) Mammalian lignans and genistein decrease the activities of aromatase and 17 beta-hydroxysteroid dehydrogenase in MCF-7 cells. J Steroid Biochem Molec Biol 94:461–467

    PubMed  CAS  Google Scholar 

  108. Cassidy A (1996) Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 55:399–417

    PubMed  CAS  Google Scholar 

  109. Lu L, Cree M, Josyla S et al (2000) Increased urinary excretion of 2-hydroxyestrone but not 16-alpha-hydroxyestrone in premenopausal women during a soya diet containing isoflavones. Cancer Res 60:1299–1305

    PubMed  CAS  Google Scholar 

  110. Lu L, Anderson K, Grady J, Kohen F, Nagamani M (2000) Decreased ovarian hormones during a soya diet: implications for breast cancer prevention. Cancer Res 60:4112–4121

    PubMed  CAS  Google Scholar 

  111. Chen J, Stavro P, Thompson L (2002) Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutr Cancer 43:187–192

    PubMed  CAS  Google Scholar 

  112. Kitts D, Yuan Y, Wijewickreme A, Thompson L (1999) Antioxidant activity of the flaxseed lignan SECO-diglycoside and its mammalian lignan metabolite enterodiol and enterolactone. Mol Cell Biochem 202:91–100

    PubMed  CAS  Google Scholar 

  113. Ruiz-Larrea M, Mohan A, Paganga G, Miller N, Bolwell G, Rice-Evans C (1997) Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26:63–70

    Article  PubMed  CAS  Google Scholar 

  114. Su S, Yeh T, Chuang W, Ho C, Chang K et al (2005) The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol 69:307–318

    PubMed  CAS  Google Scholar 

  115. Zhang S, Hunter D, Forman M, Rosner B, Speizer F, Colditz G, Manson J, Hankinson S, Willett W (1999) Dietary carotenoids and vitamins A, C, and E and risk of breast cancer. JNCI 91:547–556

    PubMed  CAS  Google Scholar 

  116. Rowland I, Faughnan M, Hoey L, Wahala K, Williamson G, Cassidy A (2003) Bioavailability of phytoestrogens. Br J Nutr 89 (supp 1):S45–S58

    PubMed  CAS  Google Scholar 

  117. Atkinson C, Berman S, Humbert O, Lampe JW (2004) In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J Nutr 134:596–599

    PubMed  CAS  Google Scholar 

  118. Franke A, Custer L, Hundahl S (2004) Determinants for urinary and plasma isoflavones in humans after soy intake. Nutr Cancer 50:141–154

    PubMed  CAS  Google Scholar 

  119. Kilkkinen A, Pietinen P, Klaukka T, Virtamo J, Korhonen P, Aldercreutz H (2002) Use of oral antibiotics decreases serum enterolactone concentration. Am J Epidemiol 155:472–477

    PubMed  Google Scholar 

  120. Atkinson C, Frankenfeld C, Lampe J (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Bio Med 203:155–170

    Google Scholar 

  121. Greenwald P (2004) Clinical trials in cancer prevention:current results and perspectives for the future. J Nutr 134:3507S–3512S

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the study coordinator, Noori Chowdhury, and study staff, Leah Palma, Razia Sultana, and Claudia Quammie for their dedication to this study. This research was funded by the Canadian Breast Cancer Research Alliance with special funding support of the Canadian Breast Cancer Foundation Ontario Chapter (CBCRA Grant No. 13572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Cotterchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterchio, M., Boucher, B.A., Kreiger, N. et al. Dietary phytoestrogen intake—lignans and isoflavones—and breast cancer risk (Canada). Cancer Causes Control 19, 259–272 (2008). https://doi.org/10.1007/s10552-007-9089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-007-9089-2

Keywords

Navigation