Skip to main content

Advertisement

Log in

Number of aberrant crypt foci associated with adiposity and IGF1 bioavailability

  • Original Paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Background

Dysregulation of the insulin-like growth factor (IGF) system, a common consequence of adiposity-induced insulin resistance, may be a key underlying mechanism linking excess body weight with colon cancer. Evidence has been derived from studies of cancer and polyps. Supporting data about aberrant crypt foci (ACF), putative pre-polyp changes, have been generated only from animal studies to date.

Methods

We randomly selected 26 patients with sex-specific elevated waist-hip-ratio (WHR) and 26 with normal values from a series of 150 patients seeking routine colonoscopy at the University of Connecticut Health Center. Cross-sectional analyses were performed of ACF number (<5, ≥5) in relation to total IGF1, IGF-binding protein-3 (IGFBP3), insulin, body mass index (BMI), WHR and waist circumference (WC). Visualized ACF in the 20 cm of the distal colon were counted using advanced endoscopic imaging.

Results

Patients with ≥5 ACF had higher BMI, WHR, and WC compared with patients with >5 ACF (p = 0.04, p = 0.03, and p = 0.01, respectively). IGFBP3 was reduced (p = 0.02) and IGF1:IGFBP3 molar ratio was greater (p = 0.03) in patients with ≥5 ACF. We did not observe significant associations between ACF number and insulin or total IGF1.

Conclusions

Our study provides the first report in humans of a possible association of ACF prevalence and IGF1 bioavailability as characterized by IGF1:IGFBP3 molar ratio and IGFBP3 level. More research is needed to determine whether this relationship is varied by ACF features (e.g., size, dysplasia, molecular changes), synchronous cancer and polyps, and is modified by colon cancer risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gunter MJ, Leitzmann MF (2006) Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 17:145–156. doi:10.1016/j.jnutbio.2005.06.011

    Article  PubMed  CAS  Google Scholar 

  2. McKeown-Eyssen G (1994) Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomarkers Prev 3(8):687–695

    PubMed  CAS  Google Scholar 

  3. Giovannucci E (1995) Insulin and colon cancer. Cancer Causes Control 6(2):164–179. doi:10.1007/BF00052777

    Article  PubMed  CAS  Google Scholar 

  4. Frezza EE, Wachtel MS, Chiriva-Internati M (2006) Influence of obesity on the risk of developing colon cancer. Gut 55:285–291. doi:10.1136/gut.2005.073163

    Article  PubMed  CAS  Google Scholar 

  5. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489. doi:10.1093/jnci/92.18.1472

    Article  PubMed  CAS  Google Scholar 

  6. Durai B, Yang W, Gupta S et al (2005) The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis 20:203–220. doi:10.1007/s00384-004-0675-4

    Article  PubMed  Google Scholar 

  7. Renehan AG, Roberts DL, Dive C (2008) Obesity and cancer: pathophysiological and biological mechanisms. Arch Physiol Biochem 114(1):71–83. doi:10.1080/13813450801954303

    Article  PubMed  CAS  Google Scholar 

  8. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87:159–170. doi:10.1016/S0092-8674(00)81333-1

    Article  PubMed  CAS  Google Scholar 

  9. Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 37:147–151. doi:10.1016/0304-3835(87)90157-1

    Article  PubMed  CAS  Google Scholar 

  10. McLellan EA, Bird RP (1988) Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Res 48:6187–6192

    PubMed  CAS  Google Scholar 

  11. McLellan EA, A , Bird RP (1991) Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res 51:5270–5279

    PubMed  CAS  Google Scholar 

  12. Wargovich MJ, Chang P, Velasco M et al (2004) Expression of cellular adhesion proteins and abnormal glycoproteins in human aberrant crypt foci. Appl Immunohistochem Mol Morphol 12(4):350–355. doi:10.1097/00129039-200412000-00011

    PubMed  Google Scholar 

  13. Papanikolaou A, Wang QS, Rosenberg DW (2000) Expression analysis of group IIA secretory phospholipase A2 in mice with differential susceptibility to azoxymethane-induced colon tumorigenesis. Carcinogenesis 21:133–138. doi:10.1093/carcin/21.2.133

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg DW, Yang S, Pleau DC et al (2007) Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res 67:3551–3554. doi:10.1158/0008-5472.CAN-07-0343

    Article  PubMed  CAS  Google Scholar 

  15. Stopera S, Bird RP (1992) Expression of ras oncogene mRNA and protein in aberrant crypt foci. Carcinogenesis 13:1863–1868. doi:10.1093/carcin/13.10.1863

    Article  PubMed  CAS  Google Scholar 

  16. Pretlow TP, O’Riordan MA, Somich GA et al (1992) Aberrant crypts correlate with tumor incidence in F344 rats treated with azoxymethane and phytate. Carcinogenesis 13:1509–1512. doi:10.1093/carcin/13.9.1509

    Article  PubMed  CAS  Google Scholar 

  17. Heinen CD, Shivapurkar N, Tang Z et al (1996) Microsatellite instability in aberrant crypt foci from human colons. Cancer Res 56(23):5339–5341

    PubMed  CAS  Google Scholar 

  18. Nambiar PR, Nakanishi M, Gupta R et al (2004) Molecular signatures of high- and low-risk aberrant crypt foci in a mouse model of sporadic colon cancer. Cancer Res 64:6394–6401. doi:10.1158/0008-5472.CAN-04-0933

    Article  PubMed  CAS  Google Scholar 

  19. Alrawi SJ, Carroll RE, Hilla HC et al (2006) Genomic instability of human aberrant crypt foci measured by Inter-(simple sequence repeat) PCR and array-CGH. Mut Res 601(1–2):30–38

    CAS  Google Scholar 

  20. Pretlow TP, Barrow BJ, Ashton WS et al (1991) Aberrant crypts: putative preneoplastic foci in human colonic mucosa. Cancer Res 51:1564–1567

    PubMed  CAS  Google Scholar 

  21. Keku TO, Lund PK, Galanko J et al (2005) Insulin resistance, apoptosis, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev 14(9):2076–2081. doi:10.1158/1055-9965.EPI-05-0239

    Article  PubMed  CAS  Google Scholar 

  22. Schoen RE, Weissfeld JL, Kuller LH et al (2005) Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps. Gastroenterology 129(2):464–475

    PubMed  Google Scholar 

  23. Renehan AG, Painter JE, Atkin WS et al (2001) High-risk colorectal adenomas and serum insulin-like growth factors. Br J Surg 88(1):107–113. doi:10.1046/j.1365-2168.2001.01645.x

    Article  PubMed  CAS  Google Scholar 

  24. Giovannucci E, Pollak MN, Platz EA et al (2000) A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol Biomarkers Prev 9:345–349

    PubMed  CAS  Google Scholar 

  25. Jenkins PJ, Frajese V, Jones AM et al (2000) Insulin-like growth factor I and the development of colorectal neoplasia in acromegaly. J Clin Endocrinol Metab 85(9):3218–3221. doi:10.1210/jc.85.9.3218

    Article  PubMed  CAS  Google Scholar 

  26. Kirman I, Poltoratskaia N, Sylla P et al (2004) Insulin-like growth factor-binding protein 3 inhibits growth of experimental colocarcinoma. Surgery 136:205–209. doi:10.1016/j.surg.2004.04.020

    Article  PubMed  Google Scholar 

  27. Aoki K, Nakajima A, Mukasa K et al (2003) Prevention of diabetes, hepatic injury, and colon cancer with dehydroepiandrosterone. J Steroid Biochem Mol Biol 85(2–5):469–472. doi:10.1016/S0960-0760(03)00219-X

    Article  PubMed  CAS  Google Scholar 

  28. Raju J, Bird RP (2003) Energy restriction reduces the number of advanced aberrant crypt foci and attenuates the expression of colonic transforming growth factor β and cyclooxygenase isoforms in Zucker obese (fa/fa) rats. Cancer Res 63:6595–6601

    PubMed  CAS  Google Scholar 

  29. Corpet DE, Peiffer G, Tache S (1998) Glycemic index, nutrient density, and promotion of aberrant crypt foci in rat colon. Nutr Cancer 32(1):29–36

    PubMed  CAS  Google Scholar 

  30. Koohestani N, Tran TT, Lee W et al (1997) Insulin resistance and promotion of aberrant crypt foci in the colons of rats on a high-fat diet. Nutr Cancer 29(1):69–76

    Article  PubMed  CAS  Google Scholar 

  31. Lasko CM, Bird RP (1995) Modulation of aberrant crypt foci by dietary fat and caloric restriction: the effects of delayed intervention. Cancer Epidemiol Biomarkers Prev 4(1):49–55

    PubMed  CAS  Google Scholar 

  32. Ealey KN, Xuan W, Lu S et al (2008) Colon carcinogenesis in liver-specific IGF-I-deficient (LID) mice. Int J Cancer 22(2):472–476. doi:10.1002/ijc.23102

    Article  CAS  Google Scholar 

  33. Balkau B, Charles MA, Drivsholm T et al (2002) Frequency of the WHO metabolic syndrome in European cohorts, and an alternative definition of an insulin resistance syndrome. Diabetes Metab 28(5):364–376

    PubMed  Google Scholar 

  34. Gram IT, Norat T, Rinaldi S et al (2006) Body mass index, waist circumference and waist-hip ratio and serum levels of IGF-I and IGFBP-3 in European women. Int J Obes (Lond) 30(11):1623–1631. doi:10.1038/sj.ijo.0803324 Epub 2006 Mar 21

    Article  CAS  Google Scholar 

  35. Stevens RG, Swede H, Heinen CD et al (2007) Aberrant crypt foci in patients with a positive family history of sporadic colorectal cancer. Cancer Lett 248(2):262–268. doi:10.1016/j.canlet.2006.08.003

    Article  PubMed  CAS  Google Scholar 

  36. Harris TG, Strickler HD, Yu H, Pollak MN, Monrad ES, Travin MI, Xue X, Rohan TE, Kaplan RC (2006) Specimen processing time and measurement of total insulin-like growth factor-I (IGF-I), free IGF-I, and IGF binding protein-3 (IGFBP-3). Growth Horm IGF Res 16:86–92. doi:10.1016/j.ghir.2006.01.002

    Article  PubMed  CAS  Google Scholar 

  37. dos Santos Silva I, Johnson N, De Stavola B et al (2006) The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol Biomarkers Prev 15(3):449–455. doi:10.1158/1055-9965.EPI-05-0555

    Article  PubMed  CAS  Google Scholar 

  38. National Institutes of Health (1998) Expert Panel Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch Intern Med 158(17):1855–1867. doi:10.1001/archinte.158.17.1855

    Article  Google Scholar 

  39. Takahashi H, Yoneda K, Tomimoto A et al (2007) Life style-related diseases of the digestive system: colorectal cancer as a life style-related disease: from carcinogenesis to medical treatment. J Pharmacol Sci 105:129–132. doi:10.1254/jphs.FM0070022

    Article  PubMed  CAS  Google Scholar 

  40. Anderson JC, Messina CR, Dakhllalah F et al (2007) Body mass index: a marker for significant colorectal neoplasia in a screening population. J Clin Gastroenterol 41(3):285–290. doi:10.1097/01.mcg.0000247988.96838.60

    Article  PubMed  Google Scholar 

  41. Chia VM, Newcomb PA, White E et al (2008) Reproducibility of serum leptin, insulin-like growth factor-I, and insulin-like growth factor-binding protein-3 measurements. Horm Res 69(5):295–300. doi:10.1159/000114861

    Article  PubMed  CAS  Google Scholar 

  42. Missmer SA, Spiegelman D, Bertone-Johnson ER et al (2006) Reproducibility of plasma steroid hormones, prolactin, and insulin-like growth factor levels among premenopausal women over a 2- to 3-year period. Cancer Epidemiol Biomarkers Prev 15(5):972–978. doi:10.1158/1055-9965.EPI-05-0848

    Article  PubMed  CAS  Google Scholar 

  43. Emberson JR, Whincup PH, Walker M et al (2002) Biochemical measures in a population-based study: effect of fasting duration and time of day. Ann Clin Biochem 39(Pt 5):493–501. doi:10.1258/000456302320314511

    Article  PubMed  CAS  Google Scholar 

  44. Holman RR (1998) Assessing the potential for alpha-glucosidase inhibitors in prediabetic states. Diabetes Res Clin Pract 40:S21–S25. doi:10.1016/S0168-8227(98)00038-2

    Article  PubMed  CAS  Google Scholar 

  45. Renehan AG, Wahlen M, Minder C et al (2004) Insulin-like growth factor (IGF)-1, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353. doi:10.1016/S0140-6736(04)16044-3

    Article  PubMed  CAS  Google Scholar 

  46. Ma J, Pollak MN, Giovannucci E et al (1999) Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91:620–625. doi:10.1093/jnci/91.7.620

    Article  PubMed  CAS  Google Scholar 

  47. Probst-Hensch NM, Yuan JM, Stanczyk FZ et al (2001) IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. Br J Cancer 85:1695–1699. doi:10.1054/bjoc.2001.2172

    Article  PubMed  CAS  Google Scholar 

  48. Kaaks R, Toniolo P, Akhmedkhanov A et al (2000) Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst 92:1592–1600. doi:10.1093/jnci/92.19.1592

    Article  PubMed  CAS  Google Scholar 

  49. Palmqvist R, Hallmans G, Rinaldi S et al (2002) Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden. Gut 50:642–646. doi:10.1136/gut.50.5.642

    Article  PubMed  CAS  Google Scholar 

  50. Henderson KD, Goran MI, Kolonel LN et al (2006) Ethnic disparity in the relationship between obesity and plasma insulin-like growth factors: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev 15(11):2298–2302. doi:10.1158/1055-9965.EPI-06-0344

    Article  PubMed  CAS  Google Scholar 

  51. Platz EA, Pollak MN, Rimm EB et al (1999) Racial variation in insulin-like growth factor-1 binding protein-3 concentrations in middle-aged men. Cancer Epidemiol Biomarkers Prev 8(12):1107–1110

    PubMed  CAS  Google Scholar 

  52. Giovannucci E, Pollak M, Liu Y, Platz EA, Majeed N, Rimm EB, Willett WC (2003) Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol Biomarker Prev 12:84–89

    CAS  Google Scholar 

  53. Chang S, Wu X, Yu H, Spitz MR (2002) Plasma concentrations of insulin-like growth factors among healthy adult men and postmenopausal women: associations with body composition, lifestyle, and reproductive factors. Cancer Epidemiol Biomarker Prev 11:758–766

    CAS  Google Scholar 

  54. Holmes MD, Pollak MN, Willett WC, Hankinson SE (2002) Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarker Prev 11:852–861

    CAS  Google Scholar 

  55. Holmes MD, Pollak MN, Hankinson SE (2002) Lifestyle correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarker Prev 11:862–867

    CAS  Google Scholar 

  56. Schoen RE, Schragin J, Weissfield JL, Thaete FL, Evans RW, Rosen CJ, Kuller LH (2002) Lack of association between adipose tissue distribution and IGF-1 and IGFBP-3 in men and women. Cancer Epidemiol Biomark Prev 11:581–586

    CAS  Google Scholar 

  57. Schoen RE, Mutch M, Rall C, Dry SM et al (2008) The natural history of aberrant crypt foci. Gastrointest Endosc Jan 4. [Epub ahead of print]

  58. Takayama T, Katsuki S, Takahashi Y et al (1998) Aberrant crypt foci of the colon as precursors of adenoma and cancer. N Engl J Med 339(18):1277–1284. doi:10.1056/NEJM199810293391803

    Article  PubMed  CAS  Google Scholar 

  59. Stevens RG, Swede H, Rosenberg DW (2007) Epidemiology of colonic aberrant crypt foci: review and analysis of existing studies. Cancer Lett 252(2):171–183. doi:10.1016/j.canlet.2006.11.009

    Article  PubMed  CAS  Google Scholar 

  60. Gupta AK, Pretlow TP, Schoen RE (2007) Aberrant crypt foci: what we know and what we need to know. Clin Gastroenterol Hepatol 5(5):526–533. doi:10.1016/j.cgh.2007.02.014

    Article  PubMed  Google Scholar 

  61. Hurlstone DP, Cross SS (2005) Role of aberrant crypt foci detected using high-magnification-chromoscopic colonoscopy in human colorectal carcinogenesis. J Gastroenterol Hepatol 20(2):173–181. doi:10.1111/j.1440-1746.2004.03433.x

    Article  PubMed  Google Scholar 

  62. Anderson JC, Gonzalez JD, Messina CR, Pollack BJ (2000) Factors that predict incomplete colonoscopy: thinner is not always better. Am J Gastroenterol 95:2784–2787. doi:10.1111/j.1572-0241.2000.03186.x

    Article  PubMed  CAS  Google Scholar 

  63. Anderson JC, Messina CR, Cohn W, Gottfried E, Ingber S, Bernstein G, Coman E, Polito J (2001) Factors predictive of difficult colonoscopy. Gastrointest Endosc 54:558–562. doi:10.1067/mge.2001.118950

    Article  PubMed  CAS  Google Scholar 

  64. Anderson JC (2006) The proximal colon: the new watershed region for colonoscopists. Am J Gastroenterol 101:2663 author reply 2663

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the efforts of Melissa Parente, Lynn Truesdale, and Judy Conway for patient recruitment, data collection, and very valuable information resources. We are thankful to the University of Connecticut General Clinical Research Center (NIH Grant M01 RR06192) for performing ELISAs, and, the Ray and Carole Neag Comprehensive Cancer Center at the University of Connecticut Health Center for infrastructural research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Swede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swede, H., Rohan, T.E., Yu, H. et al. Number of aberrant crypt foci associated with adiposity and IGF1 bioavailability. Cancer Causes Control 20, 653–661 (2009). https://doi.org/10.1007/s10552-008-9278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-008-9278-7

Keywords

Navigation