Skip to main content

Advertisement

Log in

Relationship between height at diagnosis and bone tumours in young people: a meta-analysis

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objective

Some evidence exists that patients with osteosarcoma and Ewing sarcoma are taller than the general population. However, previous studies are under-powered, lack comprehensive data and show inconsistencies.

Methods

Relevant studies linking osteosarcoma and Ewing sarcoma with height at diagnosis were identified in two major online databases, Medline (1950 to 2009) and Embase (1980 to 2009). Outcomes in individual studies were reported as standard deviation (SD) scores or percentages of study population with height at diagnosis above the median of the reference population. We performed separate random-effects meta-analyses for each outcome and tumour type.

Results

14 studies examined the height of patients with osteosarcoma or Ewing sarcoma. Meta-analyses on SD scores found patients with osteosarcoma were 0.260 SD (95% CI: 0.088–0.432) taller than the reference population (five studies). A meta-analysis on percentages found 62% (95% CI: 57%–67%) of patients were estimated to have a height above the median (six studies). Patients with Ewing sarcoma were 0.096 SD (95% CI 0.004–0.188) taller (four studies). Only one study reported the percentage of Ewing sarcoma patients with height above the median.

Conclusion

The average height of patients with osteosarcoma, but not Ewing sarcoma, was significantly above the average height of the reference population by 2–3 centimetres. The observed differences indicate the involvement of pubertal longitudinal bone growth in osteosarcoma development while different biological pathways could be relevant for Ewing sarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stiller CA (2007) Childhood Cancer in Britain Incidence, Survival. Oxford University Press, Mortality. Oxford, p 270

    Book  Google Scholar 

  2. Birch JM, Alston RD, Kelsey AM, Quinn MJ, Babb P, McNally RJ (2002) Classification and incidence of cancers in adolescents and young adults in England 1979–1997. Br J Cancer 87:1267–1274

    Article  PubMed  CAS  Google Scholar 

  3. Eng C, Li FP, Abramson DH et al (1993) Mortality from second tumours following long-term survivors of retinoblastoma. J Natl Cancer Inst 85:1121–1128

    Article  PubMed  CAS  Google Scholar 

  4. Porter DE, Holden ST, Steel CM, Cohen BB, Wallace MR, Reid R (1992) A significant proportion of patients with osteosarcoma may belong to Li-Fraumeni cancer families. J Bone Joint Surg Br 74:883–886

    PubMed  CAS  Google Scholar 

  5. Wang LL, Levy ML, Lewis RA et al (2001) Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet 102:11–17

    Article  PubMed  CAS  Google Scholar 

  6. Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5:239–246

    PubMed  CAS  Google Scholar 

  7. Tucker MA, D’Angio GJ, Boice JD Jr et al (1987) Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593

    Article  PubMed  CAS  Google Scholar 

  8. Hawkins MM, Wilson LM, Burton HS et al (1996) Radiotherapy, alkylating agents, and risk of bone cancer after childhood cancer. J Natl Cancer Inst 88:270–278

    Article  PubMed  CAS  Google Scholar 

  9. Fry SA (1998) Studies of U.S. radium dial workers: an epidemiological classic. Radiat Res 150:S21–S29

    Article  PubMed  CAS  Google Scholar 

  10. Koshurnikova NA, Gilbert ES, Sokolnikov M et al (2000) Bone cancers in Mayak workers. Radiat Res 154:237–245

    Article  PubMed  CAS  Google Scholar 

  11. Huvos AG, Butler A, Bretsky SS (1983) Osteogenic sarcoma associated with Paget’s disease of bone. A clinicopathologic study of 65 patients. Cancer 52:1489–1495

    Article  PubMed  CAS  Google Scholar 

  12. Operskalski EA, Preston-Martin S, Henderson BE, Visscher BR (1987) A case-control study of osteosarcoma in young persons. Am J Epidemiol 126:118–126

    PubMed  CAS  Google Scholar 

  13. Frentzel-Beyme R, Becher H, Salzer-Kuntschik KotzR, Salzer M (2004) Factors affecting the incident juvenile tumors in an Austrian case-control study. Cancer Detect Prev 28:159–169

    Article  PubMed  Google Scholar 

  14. Silcocks PB, Murrells T (1987) Space-time clustering and bone tumours: application of Knox’s method to data from a population-based cancer registry. Int J Cancer 40:769–771

    Article  PubMed  CAS  Google Scholar 

  15. McNally RJ, Kelsey AM, Eden OB, Alexander FE, Cairns DP, Birch JM (2003) Space-time clustering patterns in childhood solid tumours other than central nervous system tumours. Int J Cancer 103:253–258

    Article  PubMed  CAS  Google Scholar 

  16. Valery PC, McWhirter W, Sleigh A, Williams G, Bain C (2003) A national case-control study of Ewing’s sarcoma family of tumours in Australia. Int J Cancer 105:825–830

    Article  PubMed  CAS  Google Scholar 

  17. Holman CDJ, Reynolds PM, Byrne MJJ, Trotter JM, Armstrong BK (1983) Possible infectious etiology of six cases of Ewing’s sarcoma in Western Australia. Cancer 52:1974–1976

    Article  PubMed  CAS  Google Scholar 

  18. Zamora P, Garcia de Paredes ML, Gonzalez Baron M et al (1986) Ewing’s tumor in brothers. An unusual observation. Am J Clin Oncol 9:358–360

    Article  PubMed  CAS  Google Scholar 

  19. Holly EA, Aston DA, Ahn DK, Kristiansen JJ (1992) Ewing’s bone sarcoma, parental occupational exposure, and other factors. Am J Epidemiol 135:122–129

    PubMed  CAS  Google Scholar 

  20. Winn DM, Li FP, Robison LL, Mulvihill JJ, Daigle AE, Fraumeni JF Jr (1992) A case-control study of the etiology of Ewing’s sarcoma. Cancer Epidemiol Biomarkers Prev 1:525–532

    PubMed  CAS  Google Scholar 

  21. Valery PC, McWhirter W, Sleigh A, Williams G, Bain C (2002) Farm exposures, parental occupation, and risk of Ewing’s sarcoma in Australia: a national case-control study. Cancer Causes Control 13:263–270

    Article  PubMed  Google Scholar 

  22. Hum L, Kreiger N, Finkelstein MM (1998) The relationship between parental occupation and bone cancer risk in offspring. Int J Epidemiol 27:766–771

    Article  PubMed  CAS  Google Scholar 

  23. Cope JU, Tsokos M, Helma LJ, Gridley G, Tucker MA (2000) Inguinal hernia in patients with Ewing sarcoma: a clue to etiology. Med Ped Oncol 34:195–199

    Article  CAS  Google Scholar 

  24. Johnson LC (1953) A general theory of bone tumours. Bull N Y Acad Med 29:164–171

    PubMed  CAS  Google Scholar 

  25. Price CHG (1958) Primary bone-forming tumours and their relationship to skeletal growth. J Bone Joint Surg Br 40B:574–593

    Google Scholar 

  26. Withrow SJ, Powers BE, Straw RC, Wilkins RM (2006) Comparative aspects of osteosarcoma dog versus man. Clin Orthop Relat Res 448:193–198

    Article  Google Scholar 

  27. Tjalma RA (1966) Canine bone sarcoma: estimation of relative risk as a function of body size. J Natl Cancer Inst 36:1137–1150

    PubMed  CAS  Google Scholar 

  28. Ru G, Terracini B, Glickman LT (1998) Host related risk factors for canine osteosarcoma. Vet J 156:31–39

    Article  PubMed  CAS  Google Scholar 

  29. Fraumeni JF Jr (1967) Stature and malignant tumours of bone in childhood and adolescence. Cancer 20:967–973

    Article  PubMed  Google Scholar 

  30. Pui CH, Dodge RK, George SL, Green AA (1987) Height at diagnosis of malignancies. Arch Dis Child 62:495–499

    Article  PubMed  CAS  Google Scholar 

  31. Cotterill SJ, Wright CM, Pearce MS, Craft AW (2004) Stature of young people with malignant bone tumours. Pediatr Blood Cancer 42:59–63

    Article  PubMed  Google Scholar 

  32. Longhi A, Pasini A, Cicognani A et al (2005) Height as a risk factor for osteosarcoma. J Pediatr Hematol Oncol 27:314–318

    Article  PubMed  Google Scholar 

  33. Harville DA (1977) Maximum likelihood approaches to variance component estimation and to related problems. J Am Statist Assoc 72:320–338

    Article  Google Scholar 

  34. Lewis S, Clarke M (2001) Forest plots: trying to see the wood and the trees. BMJ 16:1479–1480

    Article  Google Scholar 

  35. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  36. Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18:2693–2708

    Article  PubMed  CAS  Google Scholar 

  37. Kontonpantelis E, Reeves D (2010) metaan: random-effects meta-analysis. Stata J 10:395–407

    Google Scholar 

  38. Sterne JAC, Egger M, Moher D (2008) Addressing reporting biases. In: Higgins JPT, Green S, eds. Cochrane Handbook for Systematic Reviews of Intervention. Version 5.0.1 (updated September 2008). The Cochrane Collaboration. Available from www.cochrane-handbook.org

  39. Brostrom LA, Adamson U, Filipsson R, Hall K (1980) Longitudinal growth and dental development in osteosarcoma patients. Acta Orthop Scand 51:755–759

    Article  PubMed  CAS  Google Scholar 

  40. Buckley JD, Pendergrass TW, Buckley CM et al (1998) Epidemiology of osteosarcoma and Ewing’s sarcoma in childhood: a study of 305 cases by the Children’s Cancer Group. Cancer 83:1440–1448

    Article  PubMed  CAS  Google Scholar 

  41. Gelberg KH, Fitzgerald EF, Hwang S, Dubrow R (1997) Growth and development and other risk factors for osteosarcoma in children and young adults. Int J Epidmiol 26:272–278

    Article  CAS  Google Scholar 

  42. Glasser DB, Duane K, Lane JM, Healey JH, Caparros-Sison B (1991) The effect of chemotherapy on growth in the skeletally immature individual. Clin Orthop Relat Res 262:93–100

    PubMed  Google Scholar 

  43. Pendergrass TW, Foulkes MA, Robison LL, Nesbit ME (1984) Stature and Ewing’s sarcoma in childhood. Am J Pediatr Hematol Oncol 6:33–39

    PubMed  CAS  Google Scholar 

  44. Ruza E, Sotillo E, Sierrasesumaga L, Azcona C, Patino-Garcia A (2003) Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Iα1 genes and their relationship with height in children with bone cancer. J Pediatr Hematol Oncol 25:780–786

    Article  PubMed  Google Scholar 

  45. Scranton PE, DeCicco FA, Totten RS, Yunis EJ (1975) Prognostic factors in osteosarcoma: a review of 2  years experience at the University of Pittsburgh Health Center Hospitals. Cancer 36:2179–2191

    Article  PubMed  Google Scholar 

  46. Troisi R, Masters MN, Joshipura K, Douglass C, Cole BF, Hoover RN (2006) Perinatal factors, growth and development, and osteosarcoma risk. Br J Cancer 95:1603–1607

    Article  PubMed  CAS  Google Scholar 

  47. Miller JJ (1978) The Inverse of the Freeman-Tukey double arcsine transformation. Am Stat 32:138

    Article  Google Scholar 

  48. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  49. Brockwell SE, Gordon IR (2001) A comparison of statistical methods for meta-analysis. Stat Med 20:825–840

    Article  PubMed  CAS  Google Scholar 

  50. Silva AM, Crubezy E, Cunha E (2009) Bone weight: new reference values based on a modern Portuguese indentified skeletal collection. Int J Osteoarchaeology 19:628–641

    Article  Google Scholar 

Download references

Acknowledgments

RS Arora is funded by a grant from the Paediatric Endowment Fund Christie Hospital NHS Foundation Trust and from the Teenage Cancer Trust. RD Alston and M Geraci are funded by grants from Cancer Research UK. T Eden is funded by the Teenage Cancer Trust. JM Birch is a Cancer Research UK Professorial Fellow at the University of Manchester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep S. Arora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, R.S., Kontopantelis, E., Alston, R.D. et al. Relationship between height at diagnosis and bone tumours in young people: a meta-analysis. Cancer Causes Control 22, 681–688 (2011). https://doi.org/10.1007/s10552-011-9740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-011-9740-9

Keywords

Navigation