Skip to main content

Advertisement

Log in

Height at diagnosis and birth-weight as risk factors for osteosarcoma

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Objectives

Osteosarcoma typically occurs during puberty. Studies of the association between height and/or birth-weight and osteosarcoma are conflicting. Therefore, we conducted a large pooled analysis of height and birth-weight in osteosarcoma.

Methods

Patient data from seven studies of height and three of birth-weight were obtained, resulting in 1,067 cases with height and 434 cases with birth-weight data. We compared cases to the 2000 US National Center for Health Statistics Growth Charts by simulating 1,000 age- and gender-matched controls per case. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for associations between height or birth-weight and risk of osteosarcoma for each study were estimated using logistic regression. All of the case data were combined for an aggregate analysis.

Results

Compared to average birth-weight subjects (2,665–4,045 g), individuals with high birth-weight (≥4,046 g) had an increased osteosarcoma risk (OR 1.35, 95% CI 1.01–1.79). Taller than average (51st–89th percentile) and very tall individuals (≥90th percentile) had an increased risk of osteosarcoma (OR 1.35, 95% CI 1.18–1.54 and OR 2.60, 95% CI 2.19–3.07, respectively; P trend < 0.0001).

Conclusions

This is the largest analysis of height at diagnosis and birth-weight in relation to osteosarcoma. It suggests that rapid bone growth during puberty and in utero contributes to OS etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mascarenhas L, Siegel S, Spector L, Arndt C, Femino D, Malogolowkin M (2006) Malignant bone tumors: cancer in 15- to 29-year-olds in the United States. In: Bleyer AOLM, Barr R, Ries LAG (eds) Cancer epidemiology in older adolescents and young adults 15 to 29 years of age, including SEER incidence and survival: 1975–2000. National Cancer Institute, Bethesda NIH Pub. No. 06-5767, pp 98–109

    Google Scholar 

  2. Dahlin DC, Unni KK (1986) Bone Tumors: general aspects and data on 8, 542 cases, 4th ed edn. Thomas, Springfield

    Google Scholar 

  3. Dorfman HA, Czerniak B (1995) Bone cancers. Cancer Suppl 75:203–210

    CAS  Google Scholar 

  4. Fuchs B, Pritchard DJ (2002) Etiology of osteosarcoma. Clin Orthop Relat Res 397:40–52

    Article  PubMed  Google Scholar 

  5. Hanson MF, Seton M, Merchant A (2006) Osteosarcoma in Paget’s disease of bone. J Bone Miner Res 21:P58–P63

    Article  Google Scholar 

  6. Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320

    Article  PubMed  CAS  Google Scholar 

  7. Chauveinc L, Mosseri V, Quintana E et al (2001) Osteosarcoma following retinoblastoma: age at onset and latency period. Ophthalmic Genet 22:77–88

    Article  PubMed  CAS  Google Scholar 

  8. Lipton JM, Federman N, Khabbaze Y et al (2001) Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry. J Pediatr Hematol Oncol 23:39–44

    Article  PubMed  CAS  Google Scholar 

  9. Wang LL, Gannavarapu A, Kozinetz CA et al (2003) Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst 95:669–674

    Article  PubMed  CAS  Google Scholar 

  10. Mirabello L, Troisi RJ, Savage S (2009) Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115:1531–1543

    Article  PubMed  Google Scholar 

  11. Unni KK (1996) Dahlin’s bone tumors: general aspects and data on 11,087 cases. In. 5 edn. Philadelphia: Lippincott-Raven, pp 143–183

  12. Dorfman HA, Czerniak B (1997) Bone tumors. St. Louis, Mosby, pp 128–252

    Google Scholar 

  13. Glass AG, Fraumeni JF (1970) Epidemiology of bone cancer in children. J Natl Cancer Inst 44:187–199

    PubMed  CAS  Google Scholar 

  14. Miller RW (1981) Contrasting epidemiology of childhood osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma. Nat Cancer Inst Monogr 56:9–15

    PubMed  Google Scholar 

  15. Withrow SJ, Powers BE, Straw RC, RM Wilkins (1991) Comparative aspects of osteosarcoma. Dog versus man. Clin Orthop Relat Res 270:159–168

    PubMed  Google Scholar 

  16. Tjalma RA (1966) Canine bone sarcoma: estimation of relative risk as a function of body size. J Natl Cancer Inst 36:1137–1150

    PubMed  CAS  Google Scholar 

  17. Fraumeni JF Jr (1967) Stature and malignant tumors of the bone in childhood and adolescence. Cancer 20:967–973

    Article  PubMed  Google Scholar 

  18. Troisi R, Masters MN, Joshipura K et al (2006) Perinatal factors, growth and development, and osteosarcoma risk. Br J Cancer 95:1603–1607

    Article  PubMed  CAS  Google Scholar 

  19. Scranton PE, DeCicco FA, Totten RS, Yunis EJ (1975) Prognostic factors in osteosarcoma. A review of 20 years’ experience at the University of Pittsburgh Health Center Hospitals. Cancer 36:2179–2191

    Article  PubMed  Google Scholar 

  20. Gelberg KH, Fitzgerald E, Hwang S, Dubrow R (1997) Growth and development and other risk factors for osteosarcoma in children and young adults. Int J Epidemiol 26:272–278

    Article  PubMed  CAS  Google Scholar 

  21. Rytting M, Pearson P, Raymond AK et al (2000) Osteosarcoma in preadolescent patients. Clin Orthop Relat Res 373:39–50

    Article  PubMed  Google Scholar 

  22. Ruza E, Sotillo E, Sierrasesúmaga L, Azcona C, Patiño-Garcia A (2003) Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Iα1 genes and their relationship with height in children with bone cancer. J Pediatr Hematol Oncol 25:780–786

    Article  PubMed  Google Scholar 

  23. Cotterill SJ, Wright CM, Pearce MS, Craft AW (2004) Stature of young people with malignant bone tumors. Pediatr Blood Cancer 42:59–63

    Article  PubMed  Google Scholar 

  24. Longhi A, Pasini A, Cicognami A et al (2005) Height as a risk factor for osteosarcoma. J Pediatr Hematol Oncol 27:314–318

    Article  PubMed  Google Scholar 

  25. Goodman MA, McMaster JH, Drash AL et al (1978) Metabolic and endocrine alterations in osteosarcoma patients. Cancer 42:603–610

    Article  PubMed  CAS  Google Scholar 

  26. Broström LA, Adamson U, Filipsson R, Hall K (1979) Longitudinal growth and dental development in osteosarcoma patients. Acta Orthop Scand 51:755–759

    Google Scholar 

  27. Vassilopoulou-Sellin R, Wallis CJ, Samaan NA (1985) Hormonal evaluation in patients with osteosarcoma. J Surg Oncol 28:209–213

    Article  PubMed  CAS  Google Scholar 

  28. Operskalski EA, Preston-Martin S, Henderson BE, Visscher BR (1987) A case-control study of osteosarcoma in young persons. Am J Epidemiol 126:118–126

    PubMed  CAS  Google Scholar 

  29. Pui CH, Dodge RK, George SL, Green AA (1987) Height at diagnosis of malignancies. Arch Dis Child 62:495–499

    Article  PubMed  CAS  Google Scholar 

  30. Glasser DB, Duane K, Lane JM, Healey JH, Caparros-Sison B (1991) The effect of chemotherapy on growth in the skeletally immature individual. Clin Orthop Relat Res 262:93–100

    PubMed  Google Scholar 

  31. Buckley JD, Pendergrass TW, Buckley CM et al (1998) Epidemiology of osteosarcoma and Ewing’s sarcoma in children: a study of 305 cases by the Children’s Cancer Group. Cancer 83:1440–1448

    Article  PubMed  CAS  Google Scholar 

  32. Cool WP, Grimer RJ, Carter SR, Tillman RM, Davies AM (1998) Longitudinal growth following treatment for osteosarcoma. Sarcoma 2:115–119

    Article  PubMed  CAS  Google Scholar 

  33. Hartley AL, Birch JM, McKinney PA et al (1988) The inter-regional epidemiological study of childhood cancer (IRESCC): case control study of children with bone and soft tissue sarcomas. Br J Cancer 58:838–842

    Article  PubMed  CAS  Google Scholar 

  34. Schüz J, Forman MR (2007) Birthweight by gestational age and childhood cancer. Cancer Causes Control 18:655–663

    Article  PubMed  Google Scholar 

  35. Schuz J, Kaatsch P, Kaletsch U, Meinert R, Michaelis J (1999) Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol 28:631–639

    Article  PubMed  CAS  Google Scholar 

  36. Kuczmarski RJ, Ogden CL, Guo SS et al (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  37. Hernández M, Castellet J, Narvaiza JL et al (1988) Curvas y tablas de crecimiento. Instituto de investigación sobre crecimiento y desarrollo. Orbegozo Editorial Garsi, Fundación F. Madrid

    Google Scholar 

  38. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  39. Higgins JP (2008) Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol 37:1158–1160

    Article  PubMed  Google Scholar 

  40. Egger M, Davey-Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    CAS  Google Scholar 

  41. Begg CB, Mazumdar M (1994) Operating characteristics of rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  PubMed  CAS  Google Scholar 

  42. Hjalgrim LL, Westergaard T, Rostgaard K et al (2003) Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 158:724–735

    Article  PubMed  Google Scholar 

  43. Harder T, Plagemann A, Harder A (2008) Birth weight and subsequent risk of childhood primary brain tumors: a meta-analysis. Am J Epidemiol 168:366–373

    Article  PubMed  Google Scholar 

  44. Harder T, Plagemann A, Harder A (2010) Birth weight and risk of neuroblastoma: a meta-analysis. Int J Epidemiol 39:746–756

    Article  PubMed  Google Scholar 

  45. Ognjanovic S, Carozza SE, Chow EJ et al. (2009) Birth characteristics and the risk of childhood rhabdomyosarcoma based on histological subtype. Br J Cancer Dec 8. [Epub ahead of print]

  46. Leisenring WM, Breslow NE, Evans IE et al (1994) Increased birth weights of National Wilms’ Tumor Study patients suggest a growth factor excess. Cancer Res 54:4680–4683

    PubMed  CAS  Google Scholar 

  47. Schüz J, Schmidt LS, Kogner P et al. (2010) Birth characteristics and Wilms tumors in children in the Nordic countries: a register-based case-control study. Int J Cancer [Epub ahead of print]

  48. Smith A, Lightfoot T, Simpson J, Roman E, UKCCS investigators (2009) Birth weight, sex and childhood cancer: a report from the United Kingdom Childhood Cancer Study. Cancer Epidemiol Biomarkers Prev 33:363–367

    Google Scholar 

  49. Crowther NJ, Hiller JE, Moss JR et al (2005) Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 352:2477–2486

    Article  PubMed  CAS  Google Scholar 

  50. Ross JA, Perentesis JP, Robison LL, Davies SM (1996) Big babies and infant leukemia: a role for insulin-like growth factor-1? Cancer Causes Control 7:553–559

    Article  PubMed  CAS  Google Scholar 

  51. Murphy VE, Smith R, Giles WB, Clifton VL (2006) Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev 27:141–169

    Article  PubMed  Google Scholar 

  52. Furstenberger G, Senn HJ (2002) Insulin-like growth factors and cancer. Lancet Oncol 3:298–302

    Article  PubMed  CAS  Google Scholar 

  53. Lagiou P, Hsieh CC, Lipworth L et al (2009) Insulin-like growth factor levels in cord blood, birth weight and breast cancer risk. Br J Cancer 100:1794–1798

    Article  PubMed  CAS  Google Scholar 

  54. Raqib R, Alam DS, Sarker P et al (2007) Low birth weight is associated with altered immune function in rural Bangladeshi children: a birth cohort study. Am J Clin Nutr 85:845–852

    PubMed  CAS  Google Scholar 

  55. Charalambous M, da Rocha ST, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14:3–12

    Article  PubMed  CAS  Google Scholar 

  56. Michels KB, Xue F (2006) Role of birth weight in the etiology of breast cancer. Int J Cancer 119:2007–2025

    Article  PubMed  CAS  Google Scholar 

  57. Eriksson M, Wedel H, Wallander MA et al (2007) The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age. Prostate 67:1247–1254

    Article  PubMed  Google Scholar 

  58. Cnattingius S, Lundberg F, Sandin S, Grönberg H, Iliadou A (2009) Birth characteristics and risk of prostate cancer: the contribution of genetic factors. Cancer Epidemiol Biomarkers Prev 18:2422–2426

    Article  PubMed  CAS  Google Scholar 

  59. Tanner JM, Whitehouse RH, Takaishi M (1966) Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. Part I. Arch Dis Child 41:454–471

    Article  PubMed  CAS  Google Scholar 

  60. Larsson SE, Lorentzon R (1974) The incidence of malignant primary bone tumours in relation to age, sex and site—a study of osteogenic sarcoma, chondrosarcoma and Ewing’s sarcoma diagnosed in Sweden from 1958 to 1968. J Bone Joint Surg 56-B:534–540

    Google Scholar 

  61. Price CHG (1958) Primary bone-forming tumours and their relationship to skeletal growth. J Bone Joint Surg 408:574–593

    Google Scholar 

  62. Fraumeni JF Jr, Boice JD (1982) Bone. In: DFJJ Schottenfeld (ed) Cancer epidemiology and prevention. W B Saunders Co, Philadelphia

    Google Scholar 

  63. Mirabello L, Troisi RJ, Savage SA (2009) International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int J Cancer 125:229–234

    Article  PubMed  CAS  Google Scholar 

  64. Ru G, Terracini B, Glickman LT (1998) Host related risk factors for canine osteosarcoma. Vet J 156:31–39

    Article  PubMed  CAS  Google Scholar 

  65. Ruddon RW (1987) Cancer biology. Oxford University Press, New York

    Google Scholar 

  66. Savage SA, Woodson K, Walk E et al (2007) Analysis of genes critical for growth regulation identifies Insulin-like Growth Factor 2 Receptor variations with possible functional significance as risk factors for osteosarcoma. Cancer Epidemiol Biomarkers Prev 16:1667–1674

    Article  PubMed  CAS  Google Scholar 

  67. Kappel CC, Velez-Yanguas MC, Hirschfeld S, Helman LJ (1994) Human osteosarcoma cell lines are dependent on insulin-like growth factor I for in vitro growth. Cancer Res 54:2803–2807

    PubMed  CAS  Google Scholar 

  68. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics and the Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Mirabello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 639 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabello, L., Pfeiffer, R., Murphy, G. et al. Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22, 899–908 (2011). https://doi.org/10.1007/s10552-011-9763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-011-9763-2

Keywords

Navigation