Skip to main content

Advertisement

Log in

Characterization of Alterations in Diabetic Myocardial Tissue Using High Resolution MRI

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Cardiovascular complications, including diabetic cardiomyopathy, are the major cause of fatalities in diabetes. Diabetic cardiomyopathy is expressed in part through fibrosis and left ventricular hypertrophy, increasing myocardial stiffness leading to heart failure. In order to search for curative interventions, precise evaluation of the diabetic heart pathology is extremely important. Magnetic resonance imaging (MRI) is ideally suited for the assessment of heart disorders due to its high resolution, three-dimensional properties and dimensional accuracy. In this study streptozotocin injected Sprague-Dawley rats were used as a model of type 1 diabetes to characterize abnormalities in the diabetic left ventricle (LV). High resolution MRI using a 9.4 T horizontal bore scanner was performed on control and 7 weeks diabetic rats. In the diabetic rats as compared to controls, we found increased LV wall volume to body weight ratio, suggestive of LV hypertrophy; increased LV wall mean pixel intensity, and decreased T2 relaxation time, both suggestive of changes in the diabetic tissue properties, perhaps due to presence of fibrosis which was detected through increase in the collagen fractional area. In addition, changes in the LV cavity area were observed and quantified in post-mortem diabetic hearts indicative of stiffer and less resilient LV myocardial tissue with diabetes. Together the data suggest that LV hypertrophy and fibrosis may be a major factor underlying structural and functional abnormalities in the diabetic heart, and MRI is a valuable tool to non-invasively monitor the pathological changes in diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

gems :

gradient echo multi-slice

LV:

left ventricle

mems :

multi echo multi-slice

MRI:

magnetic resonance imaging

sems :

spin echo multi-slice

References

  1. KM Choi, Y Zhong, BD Hoit, IL Grupp, H Hahn and KW Dilly, Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283 (2002) H1398-408

    PubMed  CAS  Google Scholar 

  2. CS Fox, S Coady, PD Sorlie, D Levy, JB Meigs and RB D’Agostino Sr., Trends in cardiovascular complications of diabetes. JAMA 292 (2004) 2495-2499

    Article  PubMed  CAS  Google Scholar 

  3. DS Bell, Diabetic cardiomyopathy. Diabetes Care 26 (2003) 2949-2951

    Article  PubMed  Google Scholar 

  4. KS Spector, Diabetic cardiomyopathy. Clin Cardiol 21 (1998) 885-887

    Article  PubMed  CAS  Google Scholar 

  5. ZY Fang, JB Prins and TH Marwick, Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25 (2004) 543-567

    Article  PubMed  CAS  Google Scholar 

  6. KC Tomlinson, SM Gardiner, RA Hebden and T Bennett, Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacol Rev 44 (1992) 103-150

    PubMed  CAS  Google Scholar 

  7. YM Searls, IV Smirnova, BR Fegley and L Stehno-Bittel, Exercise attenuates diabetes-induced ultrastructural changes in rat cardiac tissue. Med Sci Sports Exerc 36 (2004) 1863-1870

    Article  PubMed  Google Scholar 

  8. E Riva, G Andreoni, R Bianchi, R Latini, G Luvara and G Jeremic, Changes in diastolic function and collagen content in normotensive and hypertensive rats with long-term streptozotocin-induced diabetes. Pharmacol Res 37 (1998) 233-240

    Article  PubMed  CAS  Google Scholar 

  9. M Kawaguchi, M Techigawara, T Ishihata, T Asakura, F Saito and K Maehara, A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessels 12 (1997) 267-274

    Article  PubMed  CAS  Google Scholar 

  10. G Miric, C Dallemagne, Z Endre, S Margolin, SM Taylor and L Brown, Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol 133 (2001) 687-694

    Article  PubMed  CAS  Google Scholar 

  11. E. Adeghate, Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol Cell Biochem 261 (2004) 187-191

    Article  PubMed  CAS  Google Scholar 

  12. L Axel, Biomechanical dynamics of the heart with MRI. Annu Rev Biomed Eng 4 (2002) 21-47

    Google Scholar 

  13. GJ Heatlie and K Pointon, Cardiac magnetic resonance imaging. Postgrad Med J 80 (2004) 19-22

    Article  PubMed  CAS  Google Scholar 

  14. SA Hayat, B Patel, RS Khattar and RA Malik, Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin Sci (Lond) 107 (2004) 539-557

    CAS  Google Scholar 

  15. R Soler, E Rodriguez, JA Rodriguez, ML Perez and M Penas, Magnetic resonance imaging of apical hypertrophic cardiomyopathy. J Thorac Imaging 12 (1997) 221-225

    Article  PubMed  CAS  Google Scholar 

  16. V Hoftiezer and AM Carpenter, Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia 9 (1973) 178-184

    Article  PubMed  CAS  Google Scholar 

  17. MJ Mihm, JL Seifert, CM Coyle and JA Bauer, Diabetes related cardiomyopathy time dependent echocardiographic evaluation in an experimental rat model. Life Sci 69 (2001) 527-542

    Article  PubMed  CAS  Google Scholar 

  18. SL Jeffcoate, Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet Med 21 (2004) 657-665

    Article  PubMed  CAS  Google Scholar 

  19. GN Pierce and NS Dhalla, Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1 (1985) 48-54

    PubMed  CAS  Google Scholar 

  20. M Grover-McKay, TD Scholz, TL Burns and DJ Skorton, Myocardial collagen concentration and nuclear magnetic resonance relaxation times in the spontaneously hypertensive rat. Invest Radiol 26 (1991) 227-232

    Article  PubMed  CAS  Google Scholar 

  21. TD Scholz, SR Fleagle, TL Burns and DJ Skorton, Nuclear magnetic resonance relaxometry of the normal heart: relationship between collagen content and relaxation times of the four chambers. Magn Reson Imaging 7 (1989) 643-648

    Article  PubMed  CAS  Google Scholar 

  22. IL Cameron, VA Ord and GD Fullerton, Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magn Reson Imaging 2 (1984) 97-106

    Article  PubMed  CAS  Google Scholar 

  23. KH van Hoeven and SM Factor, A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82 (1990) 848-855

    PubMed  CAS  Google Scholar 

  24. S Chen, T Evans, K Mukherjee, M Karmazyn and S Chakrabarti, Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J Mol Cell Cardiol 32 (2000) 1621-1629

    Article  PubMed  CAS  Google Scholar 

  25. ML Gross, N Heiss, M Weckbach, A Hansen, A El-Shakmak and A Szabo, ACE-inhibition is superior to endothelin A receptor blockade in preventing abnormal capillary supply and fibrosis of the heart in experimental diabetes. Diabetologia 47 (2004) 316-324

    Article  PubMed  CAS  Google Scholar 

  26. FJ Ramires, Y Sun and KT Weber, Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade. J Mol Cell Cardiol 30 (1998) 475-483

    Article  PubMed  CAS  Google Scholar 

  27. FL Norby, LE Wold, J Duan, KK Hintz and J Ren, IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab 283 (2002) E658-666

    PubMed  CAS  Google Scholar 

  28. F Sardanelli, G Molinari, A Petillo, C Ottonello, RC Parodi and MA Masperone, MRI in hypertrophic cardiomyopathy: a morphofunctional study. J Comput Assist Tomogr 17 (1993) 862-872

    Article  PubMed  CAS  Google Scholar 

  29. M. Fisher, Diabetes and atherogenesis. Heart 90 (2004) 336-340

    Article  PubMed  Google Scholar 

  30. AI Al-Shafei, RG Wise, GA Gresham, G Bronns, TA Carpenter and LD Hall, Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J Physiol 538 (2002) 541-553

    Article  PubMed  CAS  Google Scholar 

  31. AI Al-Shafei, RG Wise, GA Gresham, TA Carpenter, LD Hall and CL Huang, Magnetic resonance imaging analysis of cardiac cycle events in diabetic rats: the effect of angiotensin-converting enzyme inhibition. J Physiol 538 (2002) 555-572

    Article  PubMed  CAS  Google Scholar 

  32. EW Remme, AA Young, KF Augenstein, B Cowan and PJ Hunter, Extraction and quantification of left ventricular deformation modes. IEEE Trans Biomed Eng 51 (2004) 1923-1931

    Article  PubMed  Google Scholar 

  33. V Pelouch, IM Dixon, L Golfman, RE Beamish and NS Dhalla, Role of extracellular matrix proteins in heart function. Mol Cell Biochem 129 (1993) 101-120

    Article  PubMed  CAS  Google Scholar 

  34. TJ Regan, N Altszuler, C Eaddy and S Bakth, Relation of growth hormone and myocardial collagen accumulation in experimental diabetes. J Lab Clin Med 110 (1987) 274-278

    PubMed  CAS  Google Scholar 

  35. M Shimizu, K Umeda, N Sugihara, H Yoshio, H Ino and R Takeda, Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 46 (1993) 32-36

    Article  PubMed  CAS  Google Scholar 

  36. VI Kapelko, VI Veksler, MI Popovich and R Ventura-Clapier, Energy-linked functional alterations in experimental cardiomyopathies. Am J Physiol 261 (1991) 39-44

    PubMed  CAS  Google Scholar 

  37. S Vinitski, MG Pearson, SJ Karlik, WK Morgan, LS Carey and G Perkins, Differentiation of parenchymal lung disorders with in vitro proton nuclear magnetic resonance. Magn Reson Med 3 (1986) 120-125

    Article  PubMed  CAS  Google Scholar 

  38. M Sundaram, MH McGuire and F Schajowicz, Soft-tissue masses: histologic basis for decreased signal (short T2) on T2-weighted MR images. Am J Roentgenol 148 (1987) 1247-1250

    CAS  Google Scholar 

  39. J Johansen, F Taagehoj, T Christensen, J Overgaard and M Overgaard, Quantitative magnetic resonance for assessment of radiation fibrosis after post-mastectomy radiotherapy. Br J Radiol 67 (1994) 1238-1242

    PubMed  CAS  Google Scholar 

  40. S Sandmann, RM Bohle, T Dreyer and T Unger, The T-type calcium channel blocker mibefradil reduced interstitial and perivascular fibrosis and improved hemodynamic parameters in myocardial infarction-induced cardiac failure in rats. Virchows Arch 436 (2000) 147-157

    Article  PubMed  CAS  Google Scholar 

  41. D Grimm, HC Jabusch, P Kossmehl, M Huber, S Fredersdorf and DP Griese, Experimental diabetes and left ventricular hypertrophy. Effects of beta-receptor blockade. Cardiovasc Pathol 11 (2002) 229-237

    Article  PubMed  CAS  Google Scholar 

  42. M Lassila, BJ Davis, TJ Allen, LM Burrell, ME Cooper and Z Cao, Cardiovascular hypertrophy in diabetic spontaneously hypertensive rats: optimizing blockade of the renin-angiotensin system. Clin Sci (Lond) 104 (2003) 341-347

    CAS  Google Scholar 

  43. A Sato, L Tarnow and HH Parving, Increased left ventricular mass in normotensive type 1 diabetic patients with diabetic nephropathy. Diabetes Care 21 (1998) 1534-1539

    Article  PubMed  CAS  Google Scholar 

  44. K Alfakih, S Reid, T Jones and M Sivananthan, Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol 14 (2004) 1813-1822

    Article  PubMed  Google Scholar 

  45. F Grothues, JC Moon, NG Bellenger, GS Smith, HU Klein and DJ Pennell, Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147 (2004) 218-223

    Article  PubMed  Google Scholar 

  46. SE Slawson, BB Roman, DS Williams and AP Koretsky, Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 39 (1998) 980-987

    Article  PubMed  CAS  Google Scholar 

  47. M Bilgen, Simple, low-cost multipurpose RF coil for MR microscopy at 9.4 T. Magn Reson Med 52 (2004) 937-940

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina V. Smirnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loganathan, R., Bilgen, M., Al-Hafez, B. et al. Characterization of Alterations in Diabetic Myocardial Tissue Using High Resolution MRI. Int J Cardiovasc Imaging 22, 81–90 (2006). https://doi.org/10.1007/s10554-005-5386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-005-5386-6

Keywords

Navigation