Skip to main content

Advertisement

Log in

Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In the 1980's, as the importance of matrix metalloproteinases (MMPs) in cancer progression was discovered, it was recognized that in most tumors these proteases were abundantly and sometimes exclusively expressed not by tumor cells, but by normal host-derived cells like fibroblasts, vascular endothelial cells, myofibroblasts, pericytes or inflammatory cells that contribute to the tumor microenvironment. Later experiments in mice deficient in specific MMPs revealed that host-derived MMPs play a critical role not only in tumor cell invasion, but also in carcinogenesis, angiogenesis, vasculogenesis and metastasis. Tumor cells secrete many factors, cytokines and chemokines that directly or indirectly increase the expression of these MMPs in the tumor microenvironment where they exert extracellular matrix (ECM) degrading and sheddase activities. The knowledge of the complex role that stromal-derived MMPs play in the interaction between tumor cells and stromal cells should allow us to consider specific windows in cancer treatment when MMP inhibition could have a valuable therapeutic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liotta LA, Stetler-Stevenson WG: Metalloproteinases and cancer invasion. Semin Cancer Biol 1: 99–106, 1990

    PubMed  CAS  Google Scholar 

  2. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277, 2003

    Article  PubMed  CAS  Google Scholar 

  3. Friedl P, Brocker EB: The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57: 41–64, 2000

    Article  PubMed  CAS  Google Scholar 

  4. McCawley LJ, Matrisian LM: Matrix metalloproteinases: they're not just for matrix anymore. Curr Opin Cell Biol 13: 534–540, 2001

    Article  PubMed  CAS  Google Scholar 

  5. DeClerck YA: Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. Eur J Cancer 36: 1258–1268, 2000

    Article  Google Scholar 

  6. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67–68, 1980

    Article  PubMed  CAS  Google Scholar 

  7. Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He CS, Bauer EA, Goldberg GI: H-ras oncogene-transformed human bronchial epithelial cells (TBE- 1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263: 6579–6587, 1988

    PubMed  CAS  Google Scholar 

  8. Wilhelm SM, Collier IE, Marmer BL, Eisen AZ, Grant GA, Goldberg GI: SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages [published erratum appears in J Biol Chem 1990 Dec 25; 265(36):22570]. J Biol Chem 264: 17213–17221, 1989

    PubMed  CAS  Google Scholar 

  9. Karelina TV, Hruza GJ, Goldberg GI, Eisen AZ: Localization of 92-kDa type IV collagenase in human skin tumors: comparison with normal human fetal and adult skin. J Invest Dermatol 100: 159–165, 1993

    Article  PubMed  CAS  Google Scholar 

  10. Zeng ZS, Guillem JG: Colocalisation of matrix metalloproteinase-9-mRNA and protein in human colorectal cancer stromal cells. Br J Cancer 74: 1161–1167, 1996

    PubMed  CAS  Google Scholar 

  11. Poulsom R, Pignatelli M, Stetler-Stevenson WG, Liotta LA, Wright PA, Jeffery RE, Longcroft JM, Rogers L, Stamp GW: Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141: 389–396, 1992

    PubMed  CAS  Google Scholar 

  12. Poulsom R, Hanby AM, Pignatelli M, Jeffery RE, Longcroft JM, Rogers L, Stamp GW: Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol 46: 429–436, 1993

    PubMed  CAS  Google Scholar 

  13. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348: 699–704, 1990

    Article  PubMed  CAS  Google Scholar 

  14. Basset P, Wolf C, Chambon P: Expression of the stromelysin-3 gene in fibroblastic cells of invasive carcinomas of the breast and other human tissues: a review. Breast Cancer Res Treat 24: 185–193, 1993

    Article  PubMed  CAS  Google Scholar 

  15. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61–65, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Ohtani H, Motohashi H, Sato H, Seiki M, Nagura H: Dual over-expression pattern of membrane-type metalloproteinase- 1 in cancer and stromal cells in human gastrointestinal carcinoma revealed by in situ hybridization and immunoelectron microscopy. Int J Cancer 68: 565–570, 1996

    Article  PubMed  CAS  Google Scholar 

  17. Harada T, Arii S, Mise M, Imamura T, Higashitsuji H, Furutani M, Niwano M, Ishigami S, Fukumoto M, Seiki M, Sato H, Imamura M: Membrane-type matrix metalloproteinase-1(MT1-MMP) gene is overexpressed in highly invasive hepatocellular carcinomas. J Hepatol 28: 231–239, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P, Basset P: Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92: 2730–2734, 1995

    Article  PubMed  CAS  Google Scholar 

  19. Bisson C, Blacher S, Polette M, Blanc JF, Kebers F, Desreux J, Tetu B, Rosenbaum J, Foidart JM, Birembaut P, Noel A: Restricted expression of membrane type 1-matrix metalloproteinase by myofibroblasts adjacent to human breast cancer cells. Int J Cancer 105: 7–13, 2003

    Article  PubMed  CAS  Google Scholar 

  20. Kikuchi R, Noguchi T, Takeno S, Kubo N, Uchida Y: Immunohistochemical detection of membrane-type-1-matrix metalloproteinase in colorectal carcinoma. Br J Cancer 83: 215–218, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Roeb E, Matern S: [Matrix metalloproteinases and colorectal cancer]. Med Klin (Munich) 98: 763–770, 2003

    Article  CAS  Google Scholar 

  22. Adachi Y, Yamamoto H, Itoh F, Arimura Y, Nishi M, Endo T, Imai K: Clinicopathologic and prognostic significance of matrilysin expression at the invasive front in human colorectal cancers. Int J Cancer 95: 290–294, 2001

    Article  PubMed  CAS  Google Scholar 

  23. Zucker S, Vacirca J: Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev 23: 101–117, 2004

    Article  PubMed  CAS  Google Scholar 

  24. Raithatha SA, Muzik H, Muzik H, Rewcastle NB, Johnston RN, Edwards DR, Forsyth PA: Localization of gelatinase-A and gelatinase-B mRNA and protein in human gliomas. Neuro-oncol 2: 145–150, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Sugiura Y, Shimada H, Seeger RC, Laug WE, DeClerck YA: Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: contribution of stromal cells to their production and correlation with metastasis. Cancer Res 58: 2209–2216, 1998

    PubMed  CAS  Google Scholar 

  26. Uria JA, Stahle-Backdahl M, Seiki M, Fueyo A, Lopez-Otin C: Regulation of collagenase-3 expression in human breast carcinomas is mediated by stromal-epithelial cell interactions. Cancer Res 57: 4882–4888, 1997

    PubMed  CAS  Google Scholar 

  27. Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH: Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149: 273–282, 1996

    PubMed  CAS  Google Scholar 

  28. Singer CF, Kronsteiner N, Marton E, Kubista M, Cullen KJ, Hirtenlehner K, Seifert M, Kubista E: MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 72: 69–77, 2002

    Article  PubMed  CAS  Google Scholar 

  29. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M: Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153: 893–904, 2001

    Article  PubMed  CAS  Google Scholar 

  30. Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K, Birkedal-Hansen H, Allen ED, Weiss SJ: MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167: 757–767, 2004

    Article  PubMed  CAS  Google Scholar 

  31. Jia MC, Schwartz MA, Sang QA: Suppression of human microvascular endothelial cell invasion and morphogenesis with synthetic matrixin inhibitors. Targeting angiogenesis with MMP inhibitors. Adv Exp Med Biol 476: 181–194, 2000

    PubMed  CAS  Google Scholar 

  32. Ben Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A: Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 90: 784–791, 2002

    Article  Google Scholar 

  33. Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Dano K: Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77: 345–355, 1997

    PubMed  CAS  Google Scholar 

  34. Stamenkovic I: Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10: 415–433, 2000

    Article  PubMed  CAS  Google Scholar 

  35. Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR, Dano K, Lopez-Otin C: Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res 61: 7091–7100, 2001

    PubMed  CAS  Google Scholar 

  36. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D: Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397, 1999

    PubMed  CAS  Google Scholar 

  37. Nielsen BS, Timshel S, Kjeldsen L, Sehested M, Pyke C, Borregaard N, Dano K: 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. Int J Cancer 65: 57–62, 1996

    Article  PubMed  CAS  Google Scholar 

  38. Saito K, Takeha S, Shiiba K, Matsuno S, Sorsa T, Nagura H, Ohtani H: Clinicopathologic significance of urokinase receptor- and MMP-9-positive stromal cells in human colorectal cancer: functional multiplicity of matrix degradation on hematogenous metastasis. Int J Cancer 86: 24–29, 2000

    Article  PubMed  CAS  Google Scholar 

  39. Huang SY, Ullrich SE, Bar-Eli M: Regulation of tumor growth and metastasis by interleukin-10: the melanoma experience. J Interf Cytok Res 19: 697–703, 1999

    Article  CAS  Google Scholar 

  40. Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, Coussens LM, DeClerck YA: The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res 65: 3200–3208, 2005

    PubMed  CAS  Google Scholar 

  41. Sang QX: Complex role of matrix metalloproteinases in angiogenesis. Cell Res 8: 171–177, 1998

    PubMed  CAS  Google Scholar 

  42. Chen X, Su Y, Fingleton B, Acuff H, Matrisian LM, Zent R, Pozzi A: Increased plasma MMP9 in integrin alpha1-null mice enhances lung metastasis of colon carcinoma cells. Int J Cancer 116: 52–61, 2005

    Article  PubMed  CAS  Google Scholar 

  43. Pozzi A, Moberg PE, Miles LA, Wagner S, Soloway P, Gardner HA: Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proc Natl Acad Sci USA 97: 2202–2207, 2000

    Article  PubMed  CAS  Google Scholar 

  44. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M: Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17: 177–181, 1999

    Article  PubMed  CAS  Google Scholar 

  45. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S: Reduced angiogenesis and tumor progression in gelatinase A- deficient mice. Cancer Res 58: 1048–1051, 1998

    PubMed  CAS  Google Scholar 

  46. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, Werb Z, Coussens LM, DeClerck YA: Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 64: 1675–1686, 2004

    Article  PubMed  CAS  Google Scholar 

  47. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94: 1134–1142, 2002

    PubMed  CAS  Google Scholar 

  48. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744, 2000

    Article  PubMed  CAS  Google Scholar 

  49. Masson R, Lefebvre O, Noel A, Fahime ME, Chenard MP, Wendling C, Kebers F, LeMeur M, Dierich A, Foidart JM, Basset P, Rio MC: In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 140: 1535–1541, 1998

    Article  PubMed  CAS  Google Scholar 

  50. Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154: 8–20, 1995

    CAS  Google Scholar 

  51. Christofori G, Semb H: The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24: 73–76, 1999

    Article  PubMed  CAS  Google Scholar 

  52. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426, 1999

    Article  PubMed  CAS  Google Scholar 

  53. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512, 1998

    Article  PubMed  CAS  Google Scholar 

  54. Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M: Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114: 111–118, 2001

    PubMed  CAS  Google Scholar 

  55. Davies G, Jiang WG, Mason MD: Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res 7: 3289–3297, 2001

    PubMed  CAS  Google Scholar 

  56. Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y: Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861–5867, 2002

    Article  PubMed  CAS  Google Scholar 

  57. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJH, Rubinfeld B, Polakis P, Matrisian LM: The metalloproteinase matrilysin is a target of b-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891, 1999

    Article  PubMed  CAS  Google Scholar 

  58. Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C: The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117: 1495–1502, 2004

    Article  PubMed  CAS  Google Scholar 

  59. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T: Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253: 269–285, 2003

    Article  PubMed  CAS  Google Scholar 

  60. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM: Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151: 879–889, 2000

    Article  PubMed  CAS  Google Scholar 

  61. Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490, 2000

    Article  PubMed  CAS  Google Scholar 

  62. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR: Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115: 3427–3438, 2002

    PubMed  CAS  Google Scholar 

  63. Sounni NE, Devy L, Hajitou A, Frankenne F, Munaut C, Gilles C, Deroanne C, Thompson EW, Foidart JM, Noel A: MT1-MMP expression promotes tumor growth and angiogenesis through an up-regulation of vascular endothelial growth factor expression. FASEB J 16: 555–564, 2002

    Article  PubMed  CAS  Google Scholar 

  64. Haas TL, Madri JA: Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med 9: 70–77, 1999

    Article  PubMed  CAS  Google Scholar 

  65. Masson V, de la Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C, Blacher S, Bajou K, Itoh T, Itohara S, Werb Z, Libert C, Foidart JM, Noel A: Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 19: 234–236, 2005

    PubMed  CAS  Google Scholar 

  66. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2: 826–835, 2002

    Article  PubMed  CAS  Google Scholar 

  67. Salcedo R, Oppenheim JJ: Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10: 359–370, 2003

    Article  PubMed  CAS  Google Scholar 

  68. Lane WJ, Dias S, Hattori K, Heissig B, Choy M, Rabbany SY, Wood J, Moore MA, Rafii S: Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 96: 4152–4159, 2000

    PubMed  CAS  Google Scholar 

  69. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637, 2002

    Article  PubMed  CAS  Google Scholar 

  70. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827, 2005

    Article  PubMed  CAS  Google Scholar 

  71. Acuff HB, Carter KJ, Fingleton B, Gorden DL, Matrisian LM: Matrix Metalloproteinase-9 from Bone Marrow-Derived Cells Contributes to Survival but not Growth of Tumor Cells in the Lung Microenvironment. Cancer Res 66: 259–266, 2006

    Article  PubMed  CAS  Google Scholar 

  72. Biswas C: Tumor-Cell Stimulation of Fibroblast Collagenase—Production of Tumor-Cell Factor. J Cell Biol 97: A459, 1983

    Article  Google Scholar 

  73. Ellis SM, Nabeshima K, Biswas C: Monoclonal-Antibody Preparation and Purification of A Tumor-Cell Collagenase-Stimulatory Factor. Cancer Res 49: 3385–3391, 1989

    PubMed  CAS  Google Scholar 

  74. Yan L, Zucker S, Toole BP: Roles of the multifunctional glycoprotein, emmprin (basigin; CD147), in tumour progression. Thromb Haemost 93: 199–204, 2005

    PubMed  CAS  Google Scholar 

  75. Toole BP: Emmprin (CD147), a cell surface regulator of matrix metalloproteinase production and function. Curr Top Dev Biol 54: 371–389, 2003

    PubMed  CAS  Google Scholar 

  76. Guo H, Majmudar G, Jensen TC, Biswas C, Toole BP, Gordon MK: Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene 220: 99–108, 1998

    Article  PubMed  CAS  Google Scholar 

  77. Biswas C, Zhang Y, DeCastro R, Guo H, Nakamura T, Kataoka H, Nabeshima K: The human tumor cell-derived collagenase stimulatory factor (renamed EMMPRIN) is a member of the immunoglobulin superfamily. Cancer Res 55: 434–439, 1995

    PubMed  CAS  Google Scholar 

  78. Tang Y, Kesavan P, Nakada MT, Yan L: Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2: 73–80, 2004

    PubMed  CAS  Google Scholar 

  79. Caudroy S, Polette M, Nawrocki-Raby B, Cao J, Toole BP, Zucker S, Birembaut P: EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis 19: 697–702, 2002

    Article  PubMed  CAS  Google Scholar 

  80. Tang Y, Nakada MT, Kesavan P, McCabe F, Millar H, Rafferty P, Bugelski P, Yan L: Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. Cancer Res 65: 3193–3199, 2005

    PubMed  CAS  Google Scholar 

  81. Zucker S, Cao J, Chen WT: Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19: 6642–6650, 2000

    Article  PubMed  CAS  Google Scholar 

  82. Dalberg K, Eriksson E, Enberg U, Kjellman M, Backdahl M: Gelatinase A, membrane type 1 matrix metalloproteinase, and extracellular matrix metalloproteinase inducer mRNA expression: correlation with invasive growth of breast cancer. World J Surg 24: 334–340, 2000

    Article  PubMed  CAS  Google Scholar 

  83. Reimers N, Zafrakas K, Assmann V, Egen C, Riethdorf L, Riethdorf S, Berger J, Ebel S, Janicke F, Sauter G, Pantel K: Expression of extracellular matrix metalloproteases inducer on micrometastatic and primary mammary carcinoma cells. Clin Cancer Res 10: 3422–3428, 2004

    Article  PubMed  CAS  Google Scholar 

  84. Lim M, Martinez T, Jablons D, Cameron R, Guo HM, Toole B, Li JD, Basbaum C: Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett 441: 88–92, 1998

    Article  PubMed  CAS  Google Scholar 

  85. Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, Kerr DJ, Wakelam MJO: Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene 21: 5765–5772, 2002

    Article  PubMed  CAS  Google Scholar 

  86. Barille S, Collette M, Thabard W, Bleunven C, Bataille R, Amiot M: Soluble IL-6R alpha upregulated IL-6, MMP-1 and MMP-2 secretion in bone marrow stromal cells. Cytokine 12: 1426–1429, 2000

    Article  PubMed  CAS  Google Scholar 

  87. Stuelten CH, DaCosta BS, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB: Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118: 2143–2153, 2005

    Article  PubMed  CAS  Google Scholar 

  88. Robinson SC, Scott KA, Balkwill FR: Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur J Immunol 32: 404–412, 2002

    Article  PubMed  CAS  Google Scholar 

  89. Yu X, Huang Y, Collin-Osdoby P, Osdoby P: Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18: 1404–1418, 2003

    Article  PubMed  CAS  Google Scholar 

  90. Sun YX, Wang JC, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS: Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89: 462–473, 2003

    Article  PubMed  CAS  Google Scholar 

  91. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW: The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 7: 147–162, 2002

    Article  PubMed  Google Scholar 

  92. Lin EY, Nguyen AV, Russell RG, Pollard JW: Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: 727–740, 2001

    Article  PubMed  CAS  Google Scholar 

  93. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295: 2387–2392, 2002

    Article  PubMed  CAS  Google Scholar 

  94. Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS: Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63: 4342–4346, 2003

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves A. DeClerck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jodele, S., Blavier, L., Yoon, J.M. et al. Modifying the soil to affect the seed: role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Rev 25, 35–43 (2006). https://doi.org/10.1007/s10555-006-7887-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-7887-8

Keywords

Navigation