Skip to main content

Advertisement

Log in

Mislocalization and unconventional functions of cellular MMPs in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

MMPs are multifunctional enzymes capable of targeting the extracellular matrix, growth factors, cytokines and cell surface-associated adhesion and signaling receptors. The cellular localization and the activity of MMPs are tightly controlled at both the transcriptional and the post-transcriptional levels. Mislocalization and presentation in unconventional cellular compartments provide MMPs with an opportunity to cleave previously unidentified proteins. This review is focused on two, entirely different MMPs, one of which is membrane-tethered and another of which is soluble (MT1-MMP and MMP-26, respectively) from twenty four known human MMPs. Our recent studies determined that both of these enzymes functioned at unexpected cellular compartments and it was resulted in the identification of novel proteolytic pathways, whose significance we only partially comprehend as of this writing. It is reasonable, however, to hypothesize from these data that many individual MMPs perform in a similar manner and display a much broader range of functions compared to what we earlier thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CT:

cytoplasmic tail

DCIS:

ductal carcinoma in situ

ERα anf ERβ:

estrogen receptor-α and -β, respectively

ECM:

extracellular matrix

ERE:

estrogen response element

GFP:

green fluorescent protein

MMP:

matrix metalloproteinase

MT1-, MT2-, MT3-, MT4-, MT5- and MT6-MMP:

membrane type-1, -2, -3, -4, -5 and -6 matrix metalloproteinase, respectively

siRNA:

small interfering RNA

TIMP:

tissue inhibitor of matrix metalloproteinases

VEGF:

vascular endothelial growth factor

References

  1. Sierevogel MJ, Pasterkamp G, de Kleijn DP, Strauss BH: Matrix metalloproteinases: a therapeutic target in cardiovascular disease. Curr Pharm Des 9: 1033–1040, 2003

    PubMed  CAS  Google Scholar 

  2. Watanabe N, Ikeda U: Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep 6: 112–120, 2004

    PubMed  Google Scholar 

  3. Belvisi MG, Bottomley KM: The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflamm Res 52: 95–100, 2003

    PubMed  CAS  Google Scholar 

  4. Cataldo DD, Gueders MM, Rocks N, Sounni NE, Evrard B, Bartsch P, Louis R, Noel A, Foidart JM: Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol Biol (Noisy-le-grand) 49: 875–884, 2003

    CAS  Google Scholar 

  5. Gabison EE, Hoang-Xuan T, Mauviel A, Menashi S: EMMPRIN/CD147, an MMP modulator in cancer, development and tissue repair. Biochimie 87: 361–368, 2005

    PubMed  CAS  Google Scholar 

  6. Mott JD, Werb Z: Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16: 558–564, 2004

    PubMed  CAS  Google Scholar 

  7. Rao BG: Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies. Curr Pharm Des 11: 295–322, 2005

    PubMed  CAS  Google Scholar 

  8. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA: S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297: 1186–1190, 2002

    PubMed  CAS  Google Scholar 

  9. Baciu PC, Suleiman EA, Deryugina EI, Strongin AY: Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-alphav integrin regulates cross-talk between alphavbeta3 and alpha2beta1 integrins in breast carcinoma cells. Exp Cell Res 291: 167–175, 2003

    PubMed  CAS  Google Scholar 

  10. Belkin AM, Akimov SS, Zaritskaya LS, Ratnikov BI, Deryugina EI, Strongin AY: Matrix-dependent proteolysis of surface transglutaminase by membrane- type metalloproteinase regulates cancer cell adhesion and locomotion. J Biol Chem 276: 18415–18422, 2001

    PubMed  CAS  Google Scholar 

  11. Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY: Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem 277: 9749–9756, 2002

    PubMed  CAS  Google Scholar 

  12. Higashi S, Miyazaki K: Novel Processing of beta-Amyloid Precursor Protein Catalyzed by Membrane Type 1 Matrix Metalloproteinase Releases a Fragment Lacking the Inhibitor Domain against Gelatinase A. Biochemistry 42: 6514–6526, 2003

    PubMed  CAS  Google Scholar 

  13. Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M: Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153: 893–904, 2001

    PubMed  CAS  Google Scholar 

  14. Mori H, Tomari T, Koshikawa N, Kajita M, Itoh Y, Sato H, Tojo H, Yana I, Seiki M: CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. Embo J 21:3949–3959, 2002

    PubMed  CAS  Google Scholar 

  15. Ratnikov BI, Rozanov DV, Postnova TI, Baciu PG, Zhang H, DiScipio RG, Chestukhina GG, Smith JW, Deryugina EI, Strongin AY: An alternative processing of integrin alpha(v) subunit in tumor cells by membrane type-1 matrix metalloproteinase. J Biol Chem 277: 7377–7385, 2002

    PubMed  CAS  Google Scholar 

  16. Rozanov DV, Ghebrehiwet B, Postnova TI, Eichinger A, Deryugina EI, Strongin AY: The hemopexin-like C-terminal domain of membrane type 1 matrix metalloproteinase regulates proteolysis of a multifunctional protein, gC1qR. J Biol Chem 277: 9318–9325, 2002

    PubMed  CAS  Google Scholar 

  17. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J: Mechanisms for pro matrix metalloproteinase activation. Apmis 107: 38–44, 1999

    PubMed  CAS  Google Scholar 

  18. Pei D, Weiss SJ: Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375: 244–247, 1995

    PubMed  CAS  Google Scholar 

  19. Ala-aho R, Kahari VM: Collagenases in cancer. Biochimie 87: 273–286, 2005

    PubMed  CAS  Google Scholar 

  20. Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174, 2002

    PubMed  CAS  Google Scholar 

  21. Marchenko GN, Ratnikov BI, Rozanov DV, Godzik A, Deryugina EI, Strongin AY: Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Biochem J 356: 705–718, 2001

    PubMed  CAS  Google Scholar 

  22. Park HI, Ni J, Gerkema FE, Liu D, Belozerov VE, Sang QX: Identification and characterization of human endometase (Matrix metalloproteinase-26) from endometrial tumor. J Biol Chem 275: 20540–20544, 2000

    PubMed  CAS  Google Scholar 

  23. Uria JA, Lopez-Otin C: Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Cancer Res 60: 4745–4751, 2000

    PubMed  CAS  Google Scholar 

  24. Mattei MG, Roeckel N, Olsen BR, Apte SS: Genes of the membrane-type matrix metalloproteinase (MT-MMP) gene family, MMP14, MMP15, and MMP16, localize to human chromosomes 14, 16, and 8, respectively. Genomics 40: 168–169, 1997

    PubMed  CAS  Google Scholar 

  25. Harton JA, Linhoff MW, Zhang J, Ting JP: Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol 169: 4088–4093, 2002

    PubMed  CAS  Google Scholar 

  26. Marchenko ND, Marchenko GN, Strongin AY: Unconventional activation mechanisms of MMP-26, a human matrix metalloproteinase with a unique PHCGXXD cysteine-switch motif. J Biol Chem 277: 18967–18972, 2002

    PubMed  CAS  Google Scholar 

  27. Park HI, Turk BE, Gerkema FE, Cantley LC, Sang QX: Peptide substrate specificities and protein cleavage sites of human endometase/matrilysin-2/matrix metalloproteinase-26. J Biol Chem 277: 35168–35175, 2002

    PubMed  CAS  Google Scholar 

  28. Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY: Beta-catenin regulates the gene of MMP-26, a novel matrix metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36: 942–956, 2004

    PubMed  CAS  Google Scholar 

  29. Zhao YG, Xiao AZ, Newcomer RG, Park HI, Kang T, Chung LW, Swanson MG, Zhau HE, Kurhanewicz J, Sang QX: Activation of pro-gelatinase B by endometase/matrilysin-2 promotes invasion of human prostate cancer cells. J Biol Chem 278: 15056–15064, 2003

    PubMed  CAS  Google Scholar 

  30. Bar-Or A, Nuttall RK, Duddy M, Alter A, Kim HJ, Ifergan I, Pennington CJ, Bourgoin P, Edwards DR, Yong VW: Analyses of all matrix metalloproteinase members in leukocytes emphasize monocytes as major inflammatory mediators in multiple sclerosis. Brain 126: 2738–2749, 2003

    PubMed  Google Scholar 

  31. Li W, Savinov AY, Rozanov DV, Golubkov VS, Hedayat H, Postnova TI, Golubkova NV, Li Y, Krajewski S, Strongin AY: MMP-26 is associated with estrogen-dependent malignancies and targets 1-anti-trypsin serpin. Cancer Res 64: 8657–8665, 2004

    PubMed  CAS  Google Scholar 

  32. Marchenko GN, Marchenko ND, Leng J, Strongin AY: Promoter characterization of the novel human matrix metalloproteinase- 26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem J 363: 253–262, 2002

    PubMed  CAS  Google Scholar 

  33. Park HI, Jin Y, Hurst DR, Monroe CA, Lee S, Schwartz MA, Sang QX: The intermediate S1' pocket of the endometase/matrilysin-2 active site revealed by enzyme inhibition kinetic studies, protein sequence analyses, and homology modeling. J Biol Chem 278: 51646–51653, 2003

    PubMed  CAS  Google Scholar 

  34. Zhang J, Cao YJ, Zhao YG, Sang QX, Duan EK: Expression of matrix metalloproteinase-26 and tissue inhibitor of metalloproteinase-4 in human normal cytotrophoblast cells and a choriocarcinoma cell line, JEG-3. Mol Hum Reprod 8: 659–666, 2002

    PubMed  CAS  Google Scholar 

  35. Isaka K, Nishi H, Nakai H, Nakada T, Feng Li Y, Ebihara Y, Takayama M: Matrix metalloproteinase-26 is expressed in human endometrium but not in endometrial carcinoma. Cancer 97: 79–89, 2003

    PubMed  CAS  Google Scholar 

  36. Gradl D, Kuhl M, Wedlich D: The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19: 5576–5587, 1999

    PubMed  CAS  Google Scholar 

  37. Barker N, Clevers H: Catenins, Wnt signaling and cancer. Bioessays 22: 961–965, 2000

    PubMed  CAS  Google Scholar 

  38. Behrens J: Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci 910: 21–33, 2000

    Article  PubMed  CAS  Google Scholar 

  39. El-Tanani M, Fernig DG, Barraclough R, Green C, Rudland P: Differential modulation of transcriptional activity of estrogen receptors by direct protein-protein interactions with the T cell factor family of transcription factors. J Biol Chem 276: 41675–41682, 2001

    PubMed  CAS  Google Scholar 

  40. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512, 1998

    PubMed  CAS  Google Scholar 

  41. Kolligs FT, Hu G, Dang CV, Fearon ER: Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19: 5696–5706, 1999

    PubMed  CAS  Google Scholar 

  42. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426, 1999

    PubMed  CAS  Google Scholar 

  43. Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W: Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638–642, 1996

    PubMed  CAS  Google Scholar 

  44. Crawford HC, Fingleton B, Gustavson MD, Kurpios N, Wagenaar RA, Hassell JA, Matrisian LM: The PEA3 subfamily of Ets transcription factors synergizes with beta- catenin-LEF-1 to activate matrilysin transcription in intestinal tumors. Mol Cell Biol 21: 1370–1383, 2001

    PubMed  CAS  Google Scholar 

  45. Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM: The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891, 1999

    PubMed  CAS  Google Scholar 

  46. Curran S, Murray GI: Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36: 1621–1630, 2000

    PubMed  CAS  Google Scholar 

  47. Huber AH, Weis WI: The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105: 391–402, 2001

    PubMed  CAS  Google Scholar 

  48. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R: Nuclear localization of beta-catenin by interaction with transcription factor LEF-1. Mech Dev 59: 3–10, 1996

    PubMed  CAS  Google Scholar 

  49. Munemitsu S, Albert I, Rubinfeld B, Polakis P: Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein. Mol Cell Biol 16: 4088–4094, 1996

    PubMed  CAS  Google Scholar 

  50. Simcha I, Kirkpatrick C, Sadot E, Shtutman M, Polevoy G, Geiger B, Peifer M, Ben-Zeév A: Cadherin sequences that inhibit beta-catenin signaling: a study in yeast and mammalian cells. Mol Biol Cell 12: 1177–1188, 2001

    PubMed  CAS  Google Scholar 

  51. Polakis P: Wnt signaling and cancer. Genes Dev 14: 1837–1851, 2000

    PubMed  CAS  Google Scholar 

  52. Krajewska M, Zapata JM, Meinhold-Heerlein I, Hedayat H, Monks A, Bettendorf H, Shabaik A, Bubendorf L, Kallioniemi OP, Kim H, Reifenberger G, Reed JC, Krajewski S: Expression of Bcl-2 family member Bid in normal and malignant tissues. Neoplasia 4: 129–140, 2002

    PubMed  CAS  Google Scholar 

  53. Krajewski S, Krajewska M, Turner BC, Pratt C, Howard B, Zapata JM, Frenkel V, Robertson S, Ionov Y, Yamamoto H, Perucho M, Takayama S, Reed JC: Prognostic significance of apoptosis regulators in breast cancer. Endocr Relat Cancer 6: 29–40, 1999

    PubMed  CAS  Google Scholar 

  54. Goffin F, Munaut C, Frankenne F, Perrier D'Hauterive S, Beliard A, Fridman V, Nervo P, Colige A, Foidart JM: Expression Pattern of Metalloproteinases and Tissue Inhibitors of Matrix-Metalloproteinases in Cycling Human Endometrium. Biol Reprod 69: 976–984, 2003

    PubMed  CAS  Google Scholar 

  55. Li Q, Wang H, Zhao Y, Lin H, Sang QA, Zhu C: Identification and specific expression of matrix metalloproteinase-26 in rhesus monkey endometrium during early pregnancy. Mol Hum Reprod 8: 934–940, 2002

    PubMed  CAS  Google Scholar 

  56. Pilka R, Whatling C, Domanski H, Hansson S, Eriksson P, Casslen B: Epithelial expression of matrix metalloproteinase-26 is elevated at mid- cycle in the human endometrium. Mol Hum Reprod 9: 271–277, 2003

    PubMed  CAS  Google Scholar 

  57. Tunuguntla R, Ripley D, Sang QX, Chegini N: Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinases TIMP-3 and -4 in benign endometrium and endometrial cancer small star, filled. Gynecol Oncol 89: 453–459, 2003

    PubMed  CAS  Google Scholar 

  58. Pilka R, Kudela M, Hansson S, Casslen B: [MMP-26 expression in endometrial explants treated with estradiol and progesterone]. Ceska Gynekol 69: 467–471, 2004

    PubMed  CAS  Google Scholar 

  59. Pilka R, Kudela M, Hansson S, Casslen B: [Novel matrix metalloproteinases in cycling endometrium]. Ceska Gynekol 69: 262–266, 2004

    PubMed  CAS  Google Scholar 

  60. Pilka R, Norata GD, Domanski H, Andersson C, Hansson S, Eriksson P, Casslen B: Matrix metalloproteinase-26 (matrilysin-2) expression is high in endometrial hyperplasia and decreases with loss of histological differentiation in endometrial cancer. Gynecol Oncol 94: 661–670, 2004

    PubMed  CAS  Google Scholar 

  61. Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C: Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35: 252–257, 2003

    PubMed  CAS  Google Scholar 

  62. Jiang WG, Davies G, Martin TA, Parr C, Watkins G, Mason MD, Mokbel K, Mansel RE: Targeting matrilysin and its impact on tumor growth in vivo: the potential implications in breast cancer therapy. Clin Cancer Res 11: 6012–6019, 2005

    PubMed  CAS  Google Scholar 

  63. Shiomi T, Okada Y: MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metastasis Rev 22: 145–152, 2003

    PubMed  CAS  Google Scholar 

  64. Zucker S, Pei D, Cao J, Lopez-Otin C: Membrane type-matrix metalloproteinases (MT-MMP). Curr Top Dev Biol 54: 1–74, 2003

    PubMed  CAS  Google Scholar 

  65. Seiki M: Membrane-type matrix metalloproteinases. Apmis 107: 137–143, 1999

    Article  PubMed  CAS  Google Scholar 

  66. Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H: MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99: 81–92, 1999

    PubMed  CAS  Google Scholar 

  67. Golldack D, Popova OV, Dietz KJ: Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J Biol Chem 277: 5541–5547, 2002

    PubMed  CAS  Google Scholar 

  68. Yana I, Weiss SJ: Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol Biol Cell 11: 2387–2401, 2000

    PubMed  CAS  Google Scholar 

  69. Macara IG: Transport into and out of the nucleus. Microbiol Mol Biol Rev 65: 570–594, 2001

    PubMed  CAS  Google Scholar 

  70. Quimby BB, Corbett AH: Nuclear transport mechanisms. Cell Mol Life Sci 58: 1766–1773, 2001

    PubMed  CAS  Google Scholar 

  71. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI: Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338, 1995

    PubMed  CAS  Google Scholar 

  72. Strongin AY, Marmer BL, Grant GA, Goldberg GI: Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J Biol Chem 268: 14033–14039, 1993

    PubMed  CAS  Google Scholar 

  73. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61–65, 1994

    PubMed  CAS  Google Scholar 

  74. Lakkaraju A, Rahman YE, Dubinsky JM: Low-density lipoprotein receptor-related protein mediates the endocytosis of anionic liposomes in neurons. J Biol Chem 277: 15085–15092, 2002

    PubMed  CAS  Google Scholar 

  75. Deryugina EI, Soroceanu L, Strongin AY: Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res 62: 580–588, 2002

    PubMed  CAS  Google Scholar 

  76. Deryugina EI, Ratnikov BI, Strongin AY: Prinomastat, a hydroxamate inhibitor of matrix metalloproteinases, has a complex effect on migration of breast carcinoma cells. Int J Cancer 104: 533–541, 2003

    PubMed  CAS  Google Scholar 

  77. Deryugina EI, Luo GX, Reisfeld RA, Bourdon MA, Strongin A: Tumor cell invasion through matrigel is regulated by activated matrix metalloproteinase-2. Anticancer Res 17: 3201–3210, 1997

    PubMed  CAS  Google Scholar 

  78. Deryugina EI, Bourdon MA, Jungwirth K, Smith JW, Strongin AY: Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int J Cancer 86: 15–23, 2000

    PubMed  CAS  Google Scholar 

  79. Rozanov DV, Strongin AY: Membrane Type-1 Matrix Metalloproteinase Functions as a Proprotein Self- convertase. Expression of the latent zymogen in Pichia pastoris, autolytic activation, and the peptide sequence of the cleavage forms. J Biol Chem 278: 8257–8260, 2003

    PubMed  CAS  Google Scholar 

  80. Rozanov DV, Deryugina EI, Ratnikov BI, Monosov EZ, Marchenko GN, Quigley JP, Strongin AY: Mutation analysis of membrane type-1 matrix metalloproteinase (MT1- MMP). The role of the cytoplasmic tail Cys(574), the active site Glu(240), and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J Biol Chem 276: 25705–25714, 2001

    PubMed  CAS  Google Scholar 

  81. Rozanov DV, Deryugina EI, Monosov EZ, Marchenko ND, Strongin AY: Aberrant, persistent inclusion into lipid rafts limits the tumorigenic function of membrane type-1 matrix metalloproteinase in malignant cells. Exp Cell Res 293: 81–95, 2004

    PubMed  CAS  Google Scholar 

  82. Hernandez-Barrantes S, Bernardo M, Toth M, Fridman R: Regulation of membrane type-matrix metalloproteinases. Semin Cancer Biol 12: 131–138, 2002

    PubMed  CAS  Google Scholar 

  83. Lehti K, Lohi J, Juntunen MM, Pei D, Keski-Oja J: Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. J Biol Chem 277: 8440–8448, 2002

    PubMed  CAS  Google Scholar 

  84. Remacle A, Murphy G, Roghi C: Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci 116: 3905–3916, 2003

    PubMed  CAS  Google Scholar 

  85. Uekita T, Itoh Y, Yana I, Ohno H, Seiki M: Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol 155: 1345–1356, 2001

    PubMed  CAS  Google Scholar 

  86. Cao J, Kozarekar P, Pavlaki M, Chiarelli C, Bahou WF, Zucker S: Distinct roles for the catalytic and hemopexin domains of membrane type 1-matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem 279: 14129–14139, 2004

    PubMed  CAS  Google Scholar 

  87. Wang X, Ma D, Keski-Oja J, Pei D: Co-recycling of MT1-MMP and MT3-MMP Through the trans-Golgi Network: Identification of DKV582 as a Recycling Signal. J Biol Chem 279: 9331–9336, 2004

    PubMed  CAS  Google Scholar 

  88. Wang P, Wang X, Pei D: Mint-3 regulates the retrieval of the internalized membrane-type matrix metalloproteinase, MT5-MMP, to the plasma membrane by binding to its carboxyl end motif EWV. J Biol Chem 279: 20461–20470, 2004

    PubMed  CAS  Google Scholar 

  89. Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D: Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci USA 98: 13693–13698, 2001

    PubMed  CAS  Google Scholar 

  90. Rozanov DV, Hahn-Dantona E, Strickland DK, Strongin AY: The Low Density Lipoprotein Receptor-related Protein LRP Is Regulated by Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) Proteolysis in Malignant Cells. J Biol Chem 279: 4260–4268, 2004

    PubMed  CAS  Google Scholar 

  91. Galvez BG, Matias-Roman S, Yanez-Mo M, Vicente-Manzanares M, Sanchez-Madrid F, Arroyo AG: Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell 15: 678–687, 2004

    PubMed  CAS  Google Scholar 

  92. Labrecque L, Nyalendo C, Langlois S, Durocher Y, Roghi C, Murphy G, Gingras D, Beliveau R: Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem 279: 52132–52140, 2004

    PubMed  CAS  Google Scholar 

  93. Gisselsson D: Chromosome instability in cancer: how, when, and why? Adv Cancer Res 87: 1–29, 2003

    PubMed  CAS  Google Scholar 

  94. Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA: Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683–693, 1996

    PubMed  CAS  Google Scholar 

  95. Coussens LM, Fingleton B, Matrisian LM: Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295: 2387–2392, 2002

    PubMed  CAS  Google Scholar 

  96. Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ: Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol 149: 1309–1323, 2000

    PubMed  CAS  Google Scholar 

  97. Hotary KB, Yana I, Sabeh F, Li XY, Holmbeck K, Birkedal-Hansen H, Allen ED, Hiraoka N, Weiss SJ: Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195: 295–308, 2002

    PubMed  CAS  Google Scholar 

  98. Seiki M: Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194: 1–11, 2003

    PubMed  CAS  Google Scholar 

  99. Seiki M: The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14: 624–632, 2002

    PubMed  CAS  Google Scholar 

  100. Seiki M, Koshikawa N, Yana I: Role of pericellular proteolysis by membrane-type 1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Metastasis Rev 22: 129–143, 2003

    PubMed  CAS  Google Scholar 

  101. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ: Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114: 33–45, 2003

    PubMed  CAS  Google Scholar 

  102. Iida J, Wilhelmson KL, Price MA, Wilson CM, Pei D, Furcht LT, McCarthy JB: Membrane type-1 matrix metalloproteinase promotes human melanoma invasion and growth. J Invest Dermatol 122: 167–176, 2004

    PubMed  CAS  Google Scholar 

  103. Annabi B, Lachambre M, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R: Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 353: 547–553, 2001

    PubMed  CAS  Google Scholar 

  104. Deryugina EI, Bourdon MA, Reisfeld RA, Strongin A: Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer Res 58: 3743–3750, 1998

    PubMed  CAS  Google Scholar 

  105. Deryugina EI, Ratnikov B, Monosov E, Postnova TI, DiScipio R, Smith JW, Strongin AY: MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263: 209–223, 2001

    PubMed  CAS  Google Scholar 

  106. Rozanov D, Ghebrehiwet B, Ratnikov B, Monosov E, Deryugina E, Strongin A: The cytoplasmic tail peptide sequence of membrane type-1 matrix metalloproteinase (MT1-MMP) directly binds to gC1qR, a compartment- specific chaperone-like regulatory protein. FEBS Lett 527: 51–57, 2002

    PubMed  CAS  Google Scholar 

  107. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277, 2003

    PubMed  CAS  Google Scholar 

  108. Galvez BG, Matias-Roman S, Albar JP, Sanchez-Madrid F, Arroyo AG: Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J Biol Chem 276: 37491–37500, 2001

    PubMed  CAS  Google Scholar 

  109. Takino T, Miyamori H, Kawaguchi N, Uekita T, Seiki M, Sato H: Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Biochem Biophys Res Commun 304: 160–166, 2003

    PubMed  CAS  Google Scholar 

  110. Sounni NE, Roghi C, Chabottaux V, Janssen M, Munaut C, Maquoi E, Galvez BG, Gilles C, Frankenne F, Murphy G, Foidart JM, Noel A: Up-regulation of VEGF-A by active MT1-MMP through activation of Src-tyrosine kinases. J Biol Chem 279: 13564–13574, 2004

    PubMed  CAS  Google Scholar 

  111. Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M: Vascular endothelial growth factor expression correlates with matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 106: 848–855, 2003

    PubMed  CAS  Google Scholar 

  112. Kim MH: Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem 89: 529–538, 2003

    PubMed  CAS  Google Scholar 

  113. Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Risberg B, Ben-Baruch G, Reich R: Coordinated expression of integrin subunits, matrix metalloproteinases (MMP), angiogenic genes and Ets transcription factors in advanced-stage ovarian carcinoma: a possible activation pathway? Cancer Metastasis Rev 22: 103–115, 2003

    PubMed  CAS  Google Scholar 

  114. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR: Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115: 3427–3438, 2002

    PubMed  CAS  Google Scholar 

  115. Davidson B, Goldberg I, Gotlieb WH, Kopolovic J, Ben-Baruch G, Nesland JM, Reich R: The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol 187: 39–45, 2002

    PubMed  CAS  Google Scholar 

  116. Wang H, Olszewski B, Rosebury W, Wang D, Robertson A, Keiser JA: Impaired angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys Res Commun 315: 363–368, 2004

    PubMed  CAS  Google Scholar 

  117. Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N, Grimbergen J, Peters E, Koolwijk P, van Hinsbergh VW: Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 101: 1810–1817, 2003

    PubMed  CAS  Google Scholar 

  118. Burbridge MF, Coge F, Galizzi JP, Boutin JA, West DC, Tucker GC: The role of the matrix metalloproteinases during in vitro vessel formation. Angiogenesis 5: 215–226, 2002

    PubMed  CAS  Google Scholar 

  119. Rozanov DV, Savinov AY, Golubkov VS, Postnova TI, Remacle A, Tomlinson S, Strongin AY: Cellular membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves C3b, an essential component of the complement system. J Biol Chem 279: 46551–46557, 2004

    PubMed  CAS  Google Scholar 

  120. Rozanov DV, Sikora S, Godzik A, Postnova TI, Golubkov V, Savinov A, Tomlinson S, Strongin AY: Non-proteolytic, receptor-ligand interactions associate cellular membrane type-1 matrix metalloproteinase with the complement component C1. J Biol Chem 279: 50321–50328, 2004

    PubMed  CAS  Google Scholar 

  121. Deryugina EI, Ratnikov BI, Yu Q, Baciu PC, Rozanov DV, Strongin AY: Prointegrin maturation follows rapid trafficking and processing of MT1-MMP in Furin-Negative Colon Carcinoma LoVo Cells. Traffic 5: 627–641, 2004

    PubMed  CAS  Google Scholar 

  122. Chen D, Purohit A, Halilovic E, Doxsey SJ, Newton AC: Centrosomal Anchoring of Protein Kinase C βII by Pericentrin Controls Microtubule Organization, Spindle Function, and Cytokinesis. J Biol Chem 279: 4829–4839, 2003

    PubMed  Google Scholar 

  123. Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS: Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339, 2002

    PubMed  CAS  Google Scholar 

  124. Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY: Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem 280: 25079–25086, 2005

    PubMed  CAS  Google Scholar 

  125. Remacle AG, Rozanov DV, Baciu PC, Chekanov AV, Golubkov VS, Strongin AY: The transmembrane domain is essential for the microtubular trafficking of membrane type-1 matrix metalloproteinase (MT1-MMP). J Cell Sci 118: 4975–4984, 2005

    PubMed  CAS  Google Scholar 

  126. Nasmyth K: Segregating sister genomes: the molecular biology of chromosome separation. Science 297: 559–565, 2002

    PubMed  CAS  Google Scholar 

  127. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426: 570–574, 2003

    PubMed  CAS  Google Scholar 

  128. Kridel SJ, Sawai H, Ratnikov BI, Chen EI, Li W, Godzik A, Strongin AY, Smith JW: A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. J Biol Chem 277: 23788–23793, 2002

    PubMed  CAS  Google Scholar 

  129. Boyd SE, Pike RN, Rudy GB, Whisstock JC, Garcia de la Banda M: PoPS: a computational tool for modeling and predicting protease specificity. J Bioinform Comput Biol 3: 551–585, 2005

    PubMed  CAS  Google Scholar 

  130. Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y: Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 13: 3235–3245, 2002

    PubMed  CAS  Google Scholar 

  131. Golubkov VS, Chekanov AV, Doxsey SJ, Strongin AY: Centrosomal pericentrin is a direct cleavage target of membrane type-1 matrix metalloproteinase in humans but not in mice: potential implications for tumorigenesis. J Biol Chem 280: 42237–42241, 2005

    PubMed  CAS  Google Scholar 

  132. Belien AT, Paganetti PA, Schwab ME: Membrane-type 1 matrix metalloprotease (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144: 373–384, 1999

    PubMed  CAS  Google Scholar 

  133. Lampert K, Machein U, Machein MR, Conca W, Peter HH, Volk B: Expression of matrix metalloproteinases and their tissue inhibitors in human brain tumors. Am J Pathol 153: 429–437, 1998

    PubMed  CAS  Google Scholar 

  134. Higashi S, Miyazaki K: Identification of a region of beta-amyloid precursor protein essential for its gelatinase A inhibitory activity. J Biol Chem 278: 14020–14028, 2003

    PubMed  CAS  Google Scholar 

  135. Tam EM, Morrison CJ, Wu YI, Stack MS, Overall CM: Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc Natl Acad Sci USA 101: 6917–6922, 2004

    PubMed  CAS  Google Scholar 

  136. Nakamura H, Suenaga N, Taniwaki K, Matsuki H, Yonezawa K, Fujii M, Okada Y, Seiki M: Constitutive and Induced CD44 Shedding by ADAM-Like Proteases and Membrane-Type 1 Matrix Metalloproteinase. Cancer Res 64: 876–882, 2004

    PubMed  CAS  Google Scholar 

  137. Takino T, Koshikawa N, Miyamori H, Tanaka M, Sasaki T, Okada Y, Seiki M, Sato H: Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases. Oncogene 22: 4617–4626, 2003

    PubMed  CAS  Google Scholar 

  138. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148: 615–624, 2000

    PubMed  CAS  Google Scholar 

  139. Li Y, Aoki T, Mori Y, Ahmad M, Miyamori H, Takino T, Sato H: Cleavage of lumican by membrane-type matrix metalloproteinase-1 abrogates this proteoglycan-mediated suppression of tumor cell colony formation in soft agar. Cancer Res 64: 7058–7064, 2004

    PubMed  CAS  Google Scholar 

  140. Nagase H, Woessner JF, Jr.: Matrix metalloproteinases. J Biol Chem 274: 21491–21494, 1999

    PubMed  CAS  Google Scholar 

  141. Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M, Sato H: Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278: 40764–40770, 2003

    PubMed  CAS  Google Scholar 

  142. Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y: Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272: 2446–2451, 1997

    PubMed  CAS  Google Scholar 

  143. Savinov AY, Remacle AG, Golubkov VS, Krajewska M, Kennedy S, Duffy MJ, Rozanov DV, Krajewski S, Strongin AY: MMP-26 proteolysis of the N-terminal domain of the estrogen receptor-beta correlates with the survival of breast cancer patients. Cancer Res 66: 2716–2724, 2006

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Y. Strongin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strongin, A.Y. Mislocalization and unconventional functions of cellular MMPs in cancer. Cancer Metastasis Rev 25, 87–98 (2006). https://doi.org/10.1007/s10555-006-7892-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-7892-y

Keywords

Navigation