Skip to main content

Advertisement

Log in

Role of tumor-associated macrophages in tumor progression and invasion

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Tumor-Associated Macrophages (TAM) represent the major inflammatory component of the stroma of many tumors, able to affect different aspects of the neoplastic tissue. Many observations indicate that TAM express several M2-associated protumoral functions, including promotion of angiogenesis, matrix remodelling and suppression of adaptive immunity. The protumoral role of TAM in cancer is further supported by clinical studies that found a correlation between the high macrophage content of tumors and poor patient prognosis and by evidence showing that long-term use of non-steroidal anti-inflammatory drugs reduces the risk of several cancers. Here, we discuss evidence supporting the view that TAM represent a unique and distinct M2-skewed myeloid population and a potential target of anti-cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.

    Article  CAS  PubMed  Google Scholar 

  3. Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine, 351, 2817–2826.

    Article  CAS  PubMed  Google Scholar 

  4. Koehne, C. H. (2004). Dubois RN: COX-2 inhibition and colorectal cancer. Seminars in Oncology, 31, 12–21.

    Article  CAS  PubMed  Google Scholar 

  5. Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., et al. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2645–2650.

    Article  CAS  PubMed  Google Scholar 

  6. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors Cancer Research, 64, 7022–7029.

    Article  CAS  PubMed  Google Scholar 

  7. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466.

    Article  CAS  PubMed  Google Scholar 

  8. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.

    Article  CAS  PubMed  Google Scholar 

  9. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  CAS  PubMed  Google Scholar 

  10. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.

    Article  CAS  PubMed  Google Scholar 

  11. Sher, A., Pearce, E., & Kaye, P. (2003). Shaping the immune response to parasites: Role of dendritic cells. Current Opinion in Immunology, 15, 421–429.

    Article  CAS  PubMed  Google Scholar 

  12. Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.

    Article  CAS  PubMed  Google Scholar 

  13. Gordon, S. (2003). Alternative activation of macrophages. Natural Reviews. Immunology, 3, 23–35.

    Article  CAS  Google Scholar 

  14. Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology, 73, 209–212.

    Article  CAS  PubMed  Google Scholar 

  15. Goerdt, S., & Orfanos, C. E. (1999). Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity, 10, 137–142.

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S., & Ruco, L. (1992). The origin and function of tumor-associated macrophages. Immunology Today, 13, 265–270.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  18. Karin, M., Cao, Y., Greten, F. R., & Li, Z. W. (2002). NF-kappaB in cancer: From innocent bystander to major culprit. Nature Reviews. Cancer, 2, 301–310.

    Article  CAS  PubMed  Google Scholar 

  19. Mantovani, A. (2005). Cancer: Inflammation by remote control. Nature, 435, 752–753.

    Article  CAS  PubMed  Google Scholar 

  20. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 3, 297–305.

    Article  Google Scholar 

  21. Andela, V. B., Schwarz, E. M., Puzas, J. E., O'Keefe, R. J., & Rosier, R. N. (2000). Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Research, 60, 6557–6562.

    CAS  PubMed  Google Scholar 

  22. Pahl, H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, S., Pettaway, C. A., Uehara, H., Bucana, C. D., & Fidler, I. J. (2001). Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 20, 4188–4197.

    Article  CAS  PubMed  Google Scholar 

  24. Baldwin, A. S. Jr. (1996). The NF-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology, 14, 649–683.

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.

    Article  CAS  PubMed  Google Scholar 

  26. Baldwin, A. S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. Journal of Clinical Investigation, 107, 241–246.

    Article  CAS  PubMed  Google Scholar 

  27. Wolf, J. S., Chen, Z., Dong, G., Sunwoo, J. B., Bancroft, C. C., Capo, D. E., et al. (2001). IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas.Clinical Cancer Research, 7, 1812–1820.

    CAS  PubMed  Google Scholar 

  28. Orlowski, R. Z., & Baldwin, A. S., Jr. (2002). NF-kappaB as a therapeutic target in cancer. Trends in Molecular Medicine, 8, 385–389.

    Article  CAS  PubMed  Google Scholar 

  29. Karin, M., Yamamoto, Y., & Wang, Q. M. (2004). The IKK NF-kappa B system: A treasure trove for drug development. Nat Rev Drug Discov, 3, 17–26.

    Article  CAS  PubMed  Google Scholar 

  30. Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., et al. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164, 762–767.

    CAS  Google Scholar 

  31. Dinapoli, M. R., Calderon, C. L., & Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. Journal of Experimental Medicine, 183, 1323–1329.

    Article  CAS  PubMed  Google Scholar 

  32. Ghosh, P., Komschlies, K. L., Cippitelli, M., Longo, D. L., Subleski, J., Ye, J., et al. (1995). Gradual loss of T-helper 1 populations in spleen of mice during progressive tumor growth. Journal of the National Cancer Institute, 87, 1478–1483.

    CAS  PubMed  Google Scholar 

  33. Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. Oncologist, 9, 10–17.

    Article  CAS  PubMed  Google Scholar 

  34. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Natural Reviews. Cancer, 3, 721–732.

    Article  CAS  Google Scholar 

  35. Schlappack, O. K., Zimmermann, A., & Hill, R. P. (1991). Glucose starvation and acidosis: Effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. British Journal of Cancer, 64, 663–670.

    CAS  PubMed  Google Scholar 

  36. Snyder, S. A., Lanzen, J. L., Braun, R. D., Rosner, G., Secomb, T. W., Biaglow, J., et al. (2001). Simultaneous administration of glucose and hyperoxic gas achieves greater improvement in tumor oxygenation than hyperoxic gas alone. International Journal of Radiation Oncology, Biology, Physics, 51, 494–506.

    Article  CAS  PubMed  Google Scholar 

  37. Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E. K., et al. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Research, 60, 916–921.

    CAS  PubMed  Google Scholar 

  38. Sen, S., Zhou, H., Zhang, R. D., Yoon, D. S., Vakar-Lopez, F., Ito, S., et al. (2002). Amplification/overexpression of a mitotic kinase gene in human bladder cancer. Journal of the National Cancer Institute, 94, 1320–1329.

    CAS  PubMed  Google Scholar 

  39. Koong, A. C., Denko, N. C., Hudson, K. M., Schindler, C., Swiersz, L., Koch, C., et al. (2000). Candidate genes for the hypoxic tumor phenotype. Cancer Research, 60, 883–887.

    CAS  PubMed  Google Scholar 

  40. Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. Journal of Cell Biology, 160, 781–791.

    Article  CAS  PubMed  Google Scholar 

  41. Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 157, 411–421.

    CAS  PubMed  Google Scholar 

  42. Knowles, H., Leek, R., & Harris, A. L. (2004). Macrophage infiltration and angiogenesis in human malignancy. Novartis Foundation Symposium, 256, 189–200.

    CAS  PubMed  Google Scholar 

  43. Cramer, T., Yamanishi, Y., Clausen, B. E., Forster, I., Pawlinski, R., Mackman, N., et al. (2003). HIF-1α is essential for myeloid cell-mediated inflammation. Cell, 112, 645–657.

    Article  CAS  PubMed  Google Scholar 

  44. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. Journal of Experimental Medicine, 198, 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  45. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicine, 10, 858–864.

    Article  CAS  Google Scholar 

  46. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    Article  CAS  PubMed  Google Scholar 

  47. Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.

    Article  PubMed  Google Scholar 

  48. Giaccia, A., Siim, B. G., & Johnson, R. S. (2003). HIF-1 as a target for drug development. Nat Rev Drug Discov, 2, 803–811.

    Article  CAS  PubMed  Google Scholar 

  49. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Natural Medicines, 1, 27–31.

    Article  CAS  Google Scholar 

  50. Hanahan, D., & Folkman, J. (1996). Patterns of emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.

    Article  CAS  PubMed  Google Scholar 

  51. Crowther, M., Brown, N. J., Bishop, E. T., & Lewis, C. E. (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. Journal of Leukocyte Biology, 70, 478–490.

    CAS  PubMed  Google Scholar 

  52. Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., Anver, M. R., et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. American Journal of Pathology, 154, 1125–1135.

    CAS  PubMed  Google Scholar 

  53. Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., et al. (2004). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. Journal of Clinical Investigation, 113, 1040–1050.

    Article  CAS  PubMed  Google Scholar 

  54. Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161, 947–956.

    CAS  PubMed  Google Scholar 

  55. Hotchkiss, K. A., Ashton, A. W., Klein, R. S., Lenzi, M. L., Zhu, G. H., & Schwartz, E. L. (2003). Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Research, 63, 527–533.

    CAS  PubMed  Google Scholar 

  56. Azenshtein, E., Luboshits, G., Shina, S., Neumark, E., Shahbazian, D., Weil, M., et al. (2002). The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 62, 1093–1102.

    CAS  PubMed  Google Scholar 

  57. Haghnegahdar, H., Du, J., Wang, D., Strieter, R. M., Burdick, M. D., Nanney, L. B., et al. (2000). The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. Journal of Leukocyte Biology, 67, 53–62.

    CAS  PubMed  Google Scholar 

  58. Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6, 3282–3289.

    CAS  PubMed  Google Scholar 

  59. Bonizzi, G., & Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in Immunology, 25, 280–288.

    Article  CAS  PubMed  Google Scholar 

  60. Li, Q., & Verma, I. M. (2002). NF-kappaB regulation in the immune system. Nature reviews. Immunology, 2, 725–734.

    Article  CAS  PubMed  Google Scholar 

  61. Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., et al. (1999). Tumour necrosis factor-a deficient mice are resistant to skin carcinogenesis. Natural Medicines, 5, 828–831.

    Article  CAS  Google Scholar 

  62. Hagemann, T., Robinson, S. C., Schulz, M., Trumper, L., Balkwill, F. R., & Binder, C. (2004). Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis, 25, 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  63. Pollard, Jeffrey W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71–78.

    Article  CAS  PubMed  Google Scholar 

  64. Lin, E. Y., Nguyen, A. V., Russell, R. G., & Pollard, J. W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. Journal of Experimental Medicine, 193, 727–740.

    Article  CAS  PubMed  Google Scholar 

  65. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–300.

    Article  CAS  PubMed  Google Scholar 

  66. Grimshaw, M. J., Wilson, J. L., & Balkwill, F. R. (2002). Endothelin-2 is a macrophage chemoattractant: Implications for macrophage distribution in tumors. Europrean Journal of Immunology, 32, 2393–2400.

    Article  CAS  Google Scholar 

  67. Grimshaw, M. J. (2005). Endothelins in breast tumour cell invasion. Cancer Letter, 222, 129–138.

    Article  CAS  Google Scholar 

  68. Browatzki, M., Pfeiffer, C. A., Schmidt, J., & Kranzhofer, R. (2005). Endothelin-1 induces CD40 but not IL-6 in human monocytes via the proinflammatory transcription factor NF-kappaB. European Journal of Medical Research, 10, 197–201.

    CAS  PubMed  Google Scholar 

  69. Spinella, F., Rosano, L., Di Castro, V., Natali, P. G., & Bagnato, A. (2002). Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. Journal of Biological Chemistry, 277, 27850–27855.

    Article  CAS  PubMed  Google Scholar 

  70. Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.

    Article  PubMed  Google Scholar 

  71. O'Sullivan, C., & Lewis, C. E. (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. Journal of Pathology, 172, 229–235.

    Article  PubMed  Google Scholar 

  72. Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 7, 147–162.

    Article  PubMed  Google Scholar 

  73. Ishikawa, S., Egami, H., Kurizaki, T., Akagi, J., Tamori, Y., Yoshida, N., et al. (2003). Identification of genes related to invasion and metastasis in pancreatic cancer by cDNA representational difference analysis. Journal of Experimental and Clinical Cancer Research, 22, 299–306.

    CAS  Google Scholar 

  74. Eubank, T. D., Galloway, M., Montague, C. M., Waldman, W. J., Marsh, C. B. (2003). M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. Journal of Immunology, 171, 2637–2643.

    CAS  Google Scholar 

  75. Hildenbrand, R., Dilger, I., Horlin, A., & Stutte, H. J. (1995). Urokinase and macrophages in tumour angiogenesis. British Journal of Cancer, 72, 818–823.

    CAS  PubMed  Google Scholar 

  76. Klimetzek, V., & Sorg, C. (1977). Lymphokine-induced secretion of plasminogen activator by murine macrophages. European Journal of Immunology, 7, 185–187.

    CAS  PubMed  Google Scholar 

  77. Ahmed, F., Wyckoff, J., Lin, E. Y., Wang, W., Wang, Y., Hennighausen L., et al. (2002). GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Research, 62, 7166–7169.

    CAS  PubMed  Google Scholar 

  78. Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65, 5278–5283.

    Article  CAS  PubMed  Google Scholar 

  79. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.

    Article  CAS  PubMed  Google Scholar 

  80. Locati, M., Deuschle, U., Massardi, M. L., Martinez, F. O., Sironi, M., Sozzani, S., et al. (2002). Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. Journal of Immunology, 168, 3557–3562.

    CAS  Google Scholar 

  81. Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5, 641–654.

    Article  CAS  PubMed  Google Scholar 

  82. de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.

    Article  PubMed  CAS  Google Scholar 

  83. Grohmann, U., Fallarino, F., & Puccetti, P. (2003). Tolerance, DCs and tryptophan: Much ado about IDO. Trends in Immunology, 24, 242–248.

    Article  CAS  PubMed  Google Scholar 

  84. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Natural Medicines, 11, 312–319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mantovani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantovani, A., Schioppa, T., Porta, C. et al. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25, 315–322 (2006). https://doi.org/10.1007/s10555-006-9001-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9001-7

Keywords

Navigation