Skip to main content

Advertisement

Log in

The signaling mechanism of ROS in tumor progression

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial–mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFβ and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.

    CAS  PubMed  Google Scholar 

  2. Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5, 781–788.

    CAS  Google Scholar 

  3. Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.

    CAS  PubMed  Google Scholar 

  4. Chiarugi, P. (2001). The redox regulation of LMW–PTP during cell proliferation or growth inhibition. IUBMB Life, 52, 55–59.

    Article  CAS  PubMed  Google Scholar 

  5. Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.

    CAS  PubMed  Google Scholar 

  6. Gourlay, C. W., & Ayscough, K. R. (2005). The actin cytoskeleton: A key regulator of apoptosis and ageing? Nature Reviews. Molecular Cell Biology, 6, 583–589.

    CAS  PubMed  Google Scholar 

  7. Johann, A. M., von Knethen, A., Lindemann, D., & Brune, B. (2005). Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death and Differentiation, 13, 1533–1540.

    PubMed  Google Scholar 

  8. Otani, H. (2004). Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxidants & Redox Signalling, 6, 449–469.

    CAS  Google Scholar 

  9. Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43, 289–330.

    CAS  PubMed  Google Scholar 

  10. Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 1087–1097.

    CAS  PubMed  Google Scholar 

  11. Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signalling, 2, 903–917.

    Article  CAS  Google Scholar 

  12. Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives, 106(Suppl. 1), 289–295.

    CAS  PubMed  Google Scholar 

  13. Emerit, I. (1994). Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radical Biology & Medicine, 16, 99–109.

    CAS  Google Scholar 

  14. Winter Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International, 49, 91–102, Review.

    Google Scholar 

  15. Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881–1896.

    CAS  PubMed  Google Scholar 

  16. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

    CAS  PubMed  Google Scholar 

  17. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    CAS  PubMed  Google Scholar 

  18. Bogenrieder, T., & Herlyn, M. (2003). Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene, 22, 6524–6536.

    CAS  PubMed  Google Scholar 

  19. Harlozinska, A. (2005). Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Research, 25, 3327–3333.

    CAS  PubMed  Google Scholar 

  20. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.

    CAS  PubMed  Google Scholar 

  21. Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: What can effusions teach us? Diagnostic Cytopathology, 33, 316–319.

    PubMed  Google Scholar 

  22. Tanaka, T., Bai, Z., Srinoulprasert, Y., Yang, B. G., Hayasaka, H., & Miyasaka, M. (2005). Chemokines in tumor progression and metastasis. Cancer Science, 96, 317–322.

    CAS  PubMed  Google Scholar 

  23. Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–214.

    CAS  PubMed  Google Scholar 

  24. Cully, M., You, H., Levine, A. J., & Mak, T. W. (2006). Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews. Cancer, 6, 184–192.

    CAS  PubMed  Google Scholar 

  25. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

    CAS  Google Scholar 

  26. Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signalling, 7, 472–481.

    CAS  Google Scholar 

  27. Hordijk, P. L. (2006). Regulation of NADPH oxidases: The role of Rac proteins. Circulation Research, 98, 453–462.

    CAS  PubMed  Google Scholar 

  28. Bokoch, G. M., & Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood, 100, 2692–2696.

    CAS  PubMed  Google Scholar 

  29. Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine, 33, 1047–1460.

    CAS  Google Scholar 

  30. Eyries, M., Collins, T., & Khachigian, L. M. (2004). Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium, 11, 133–139.

    CAS  PubMed  Google Scholar 

  31. Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.

    CAS  PubMed  Google Scholar 

  32. Wang, Z., Castresana, M. R., & Newman, W. H. (2001). Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 285, 669–674.

    CAS  PubMed  Google Scholar 

  33. Tudor, K. S., Hess, K. L., & Cook-Mills, J. M. (2001). Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine, 15, 196–211.

    CAS  PubMed  Google Scholar 

  34. Datta, R., Yoshinaga, K., Kaneki, M., Pandey, P., & Kufe, D. (2000). Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta-dependent and required for SAPK activation. Journal of Biological Chemistry, 275, 41000–41003.

    CAS  PubMed  Google Scholar 

  35. Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., et al. (2006). Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25(26), 3699–3707.

    Google Scholar 

  36. Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., et al. (2000). Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Current Biology, 10, 535–538.

    CAS  PubMed  Google Scholar 

  37. Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—a double-edged sword. Trends in Cell Biology, 11, S44–S51.

    CAS  PubMed  Google Scholar 

  38. Yamamura, Y., Hua, X., Bergelson, S., & Lodish, H. F. (2000). Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. Journal of Biological Chemistry, 275, 36295–36302.

    CAS  PubMed  Google Scholar 

  39. Chan, C. T., Li, S. H., & Verma, S. (2005). Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. American Journal of Physiology. Renal Physiology, 289, F679–F684.

    CAS  PubMed  Google Scholar 

  40. Sithanandam, G., Fornwald, L. W., Fields, J., & Anderson, L. M. (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 24, 1847–1859.

    CAS  PubMed  Google Scholar 

  41. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

    CAS  PubMed  Google Scholar 

  42. Segarra, J., Balenci, L., Drenth, T., Maina, F., & Lamballe, F. (2006). Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. Journal of Biological Chemistry, 281, 4771–4778.

    CAS  PubMed  Google Scholar 

  43. Ren, Y., Cao, B., Law, S., Xie, Y., Lee, P. Y., Cheung, L., et al. (2005). Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clinical Cancer Research, 11, 6190–6197.

    CAS  PubMed  Google Scholar 

  44. Daveau, M., Scotte, M., Francois, A., Coulouarn, C., Ros, G., Tallet, Y., et al. (2003). Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Molecular Carcinogenesis, 36, 130–141.

    CAS  PubMed  Google Scholar 

  45. Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.

    Google Scholar 

  46. Dietrich, S., Uppalapati, R., Seiwert, T. Y., & Ma, P. C. (2005). Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. Journal of Environmental Pathology, Toxicology and Oncology, 24(3), 149–162.

    CAS  PubMed  Google Scholar 

  47. Shimao, Y., Nabeshima, K., Inoue, T., & Koono, M. (1999). TPA-enhanced motility and invasion in a highly metastatic variant (L-10) of human rectal adenocarcinoma cell line RCM-1: Selective role of PKC-alpha and its inhibition by a combination of PDBu-induced PKC downregulation and antisense oligonucleotides treatment. Clinical & Experimental Metastasis, 17, 351–360.

    CAS  Google Scholar 

  48. Aprikian, A. G., Tremblay, L., Han, K., & Chevalier, S. (1997). Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. International Journal of Cancer, 72, 498–504.

    CAS  Google Scholar 

  49. Schlingemann, J., Hess, J., Wrobel, G., Breitenbach, U., Gebhardt, C., Steinlein, P., et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer, 104, 699–708.

    CAS  Google Scholar 

  50. Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min do, S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23, 1845–1853.

    CAS  PubMed  Google Scholar 

  51. Debidda, M., Sanna, B., Cossu, A., Posadino, A. M., Tadolini, B., Ventura, C., et al. (2003). NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: Involvement of PKC/Raf/Mek/ERK signalling pathway. International Journal of Oncology, 23, 477–482.

    CAS  PubMed  Google Scholar 

  52. Woo, J. H., Park, J. W., Lee, S. H., Kim, Y. H., Lee, I. K., Gabrielson, E., et al. (2003). Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Research, 63, 3430–3434.

    CAS  PubMed  Google Scholar 

  53. Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C α and ERK for migration of human hepatoma cell HepG2. Molecular Cancer Research, 4(10), 747–758.

    Google Scholar 

  54. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.

    CAS  PubMed  Google Scholar 

  55. Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.

    CAS  PubMed  Google Scholar 

  56. Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Reviews, 24, 395–402.

    CAS  PubMed  Google Scholar 

  57. Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt. 15), 3263–3275.

    CAS  PubMed  Google Scholar 

  58. Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33(Pt. 5), 891–895.

    CAS  PubMed  Google Scholar 

  59. Grande-Garcia, A., Echarri, A., & Del Pozo, M. A. (2005). Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions, 33, 609–613.

    CAS  PubMed  Google Scholar 

  60. Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.

    CAS  PubMed  Google Scholar 

  61. Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.

    CAS  PubMed  Google Scholar 

  62. Zhou, H., & Kramer, R. H. (2005). Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. Journal of Biological Chemistry, 280, 10624–10635.

    CAS  PubMed  Google Scholar 

  63. Hamelers, I. H., Olivo, C., Mertens, A. E., Pegtel, D. M., van der Kammen, R. A., Sonnenberg, A., et al. (2005). The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration. Journal of Cell Biology, 171, 871–881.

    CAS  PubMed  Google Scholar 

  64. Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5, 236–241.

    CAS  PubMed  Google Scholar 

  65. Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.

    CAS  PubMed  Google Scholar 

  66. Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.

    CAS  PubMed  Google Scholar 

  67. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

    CAS  PubMed  Google Scholar 

  68. Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H., & Chung, A. S. (2002). Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. Journal of Biological Chemistry, 277, 30271–30282.

    CAS  PubMed  Google Scholar 

  69. Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.

    CAS  PubMed  Google Scholar 

  70. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435, 347–353.

    CAS  PubMed  Google Scholar 

  71. Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274, 13541–1356.

    CAS  PubMed  Google Scholar 

  72. Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277, 3101–3108.

    CAS  PubMed  Google Scholar 

  73. Honore, S., Kovacic, H., Pichard, V., Briand, C., & Rognoni, J. B. (2003). Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): Implication of NADPH oxidase-dependent production of ROS. Experimental Cell Research, 285, 59–71.

    CAS  PubMed  Google Scholar 

  74. Groth, S., Schulze, M., Kalthoff, H., Fandrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.

    CAS  PubMed  Google Scholar 

  75. Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.

    CAS  PubMed  Google Scholar 

  76. Deem, T. L., & Cook-Mills, J. M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood, 104, 2385–2393.

    CAS  PubMed  Google Scholar 

  77. Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96, 379–386.

    CAS  PubMed  Google Scholar 

  78. Bokoch, G. M., & Knaus, U. G. (2005). NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences, 28, 502–508.

    Google Scholar 

  79. Ushio-Fukai, M., & Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Molecular and Cellular Biochemistry, 264, 85–97.

    CAS  PubMed  Google Scholar 

  80. Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.

    Google Scholar 

  81. Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 98, 5550–5555.

    CAS  PubMed  Google Scholar 

  82. Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.

    CAS  PubMed  Google Scholar 

  83. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

    CAS  Google Scholar 

  84. van Waveren, C., Sun, Y., Cheung, H. S., & Moraes, C. T. (2006). Oxidative phosphorylation dysfunction modulates expression of extracellular matrix—remodeling genes and invasion. Carcinogenesis, 27, 409–418.

    PubMed  Google Scholar 

  85. Czarnecka, A. M., Golik, P., & Bartnik, E. (2006). Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics, 47, 67–78.

    PubMed  Google Scholar 

  86. Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.

    CAS  PubMed  Google Scholar 

  87. Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS, 77, 239–254.

    CAS  PubMed  Google Scholar 

  88. Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxidants & Redox Signalling, 7, 761–767.

    CAS  Google Scholar 

  89. Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.

    CAS  PubMed  Google Scholar 

  90. Carter, C. A., & Kane, C. J. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Current Medicinal Chemistry, 11, 2883–2902.

    CAS  PubMed  Google Scholar 

  91. Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports, 6, 1363–1370.

    CAS  PubMed  Google Scholar 

  92. Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., et al. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 115, 168–176.

    CAS  PubMed  Google Scholar 

  93. Su, S., DiBattista, J. A., Sun, Y., Li, W. Q., & Zafarullah, M. (1998). Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. Journal of Cellular Biochemistry, 70, 517–527.

    CAS  PubMed  Google Scholar 

  94. Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274, 32486–32492.

    CAS  PubMed  Google Scholar 

  95. Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C–integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22, 5897–5911.

    CAS  PubMed  Google Scholar 

  96. Sliva, D. (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Current Cancer Drug Targets, 4, 327–336.

    CAS  PubMed  Google Scholar 

  97. Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28, 1387–1404.

    CAS  Google Scholar 

  98. Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280, 13682–13693.

    CAS  PubMed  Google Scholar 

  99. Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14, S227–232.

    CAS  PubMed  Google Scholar 

  100. Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.

    CAS  PubMed  Google Scholar 

  101. Velarde, V., de la Cerda, P. M., Duarte, C., Arancibia, F., Abbott, E., Gonzalez, A., et al. (2004). Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biological Research, 37, 419–430.

    Article  CAS  PubMed  Google Scholar 

  102. Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.

    CAS  PubMed  Google Scholar 

  103. Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9, 85–89.

    CAS  PubMed  Google Scholar 

  104. Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9(1), 85–89.

    CAS  PubMed  Google Scholar 

  105. Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.

    CAS  PubMed  Google Scholar 

  106. Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33, 1121–1132.

    CAS  Google Scholar 

  107. Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9, 387–399.

    CAS  PubMed  Google Scholar 

  108. Goldstein, B. J., Mahadev, K., & Wu, X. (2005). Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 54, 311–321.

    CAS  PubMed  Google Scholar 

  109. Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 2, 28–32.

    Google Scholar 

  110. Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A. Jr, & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171, 893–904.

    CAS  PubMed  Google Scholar 

  111. Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology, 18(2), 790–798.

    CAS  PubMed  Google Scholar 

  112. Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995). Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal, 14, 6157–6163.

    CAS  PubMed  Google Scholar 

  113. Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I., & Grando, S. A. (2005). The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry, 280, 39220–39228.

    CAS  PubMed  Google Scholar 

  114. Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: Its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280, 14675–14683.

    CAS  PubMed  Google Scholar 

  115. Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt. 20), 4619–4628.

    CAS  PubMed  Google Scholar 

  116. Javelaud, D., & Mauviel, A. (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: Implications for carcinogenesis. Oncogene, 24, 5742–5750.

    CAS  PubMed  Google Scholar 

  117. Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs, 179, 11–23.

    CAS  PubMed  Google Scholar 

  118. Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling—mechanisms and consequences. Current Opinion in Genetics & Development, 12, 30–35.

    CAS  Google Scholar 

  119. Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20, 2063–2073.

    CAS  PubMed  Google Scholar 

  120. Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., et al. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. Journal of Molecular and Cellular Cardiology, 36, 129–139.

    CAS  PubMed  Google Scholar 

  121. Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.

    Google Scholar 

  122. Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.

    CAS  PubMed  Google Scholar 

  123. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

    CAS  PubMed  Google Scholar 

  124. Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Molecular Cancer Research, 1, 801–809.

    CAS  PubMed  Google Scholar 

  125. Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23, 3721–3734.

    CAS  PubMed  Google Scholar 

  126. Wang, J., Frost, J. A., Cobb, M. H., & Ross, E. M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. Journal of Biological Chemistry, 274, 31641–31647.

    CAS  PubMed  Google Scholar 

  127. Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.

    CAS  PubMed  Google Scholar 

  128. Fryer, B. H., & Field J. (2005). Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Letters, 229, 13–23.

    CAS  PubMed  Google Scholar 

  129. Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 291, 687–691.

    CAS  PubMed  Google Scholar 

  130. Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.

    CAS  PubMed  Google Scholar 

  131. Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T., et al. (2004). Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circulation Research, 94, 1219–1226.

    CAS  PubMed  Google Scholar 

  132. Liu, J. W., Chandra, D., Rudd, M. D., Butler, A. P., Pallotta, V., Brown, D., et al. (2005). Induction of prosurvival molecules by apoptotic stimuli: Involvement of FOXO3a and ROS. Oncogene, 24, 2020–2031.

    CAS  PubMed  Google Scholar 

  133. Fujii, T., Onohara, N., Maruyama, Y., Tanabe, S., Kobayashi, H., Fukutomi, M., et al. (2005). Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. Journal of Biological Chemistry, 280, 23041–23047.

    CAS  PubMed  Google Scholar 

  134. Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 108710–108797.

    Google Scholar 

  135. Hsu, T. C., Young, M. R., Cmarik, J., & Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology & Medicine, 28, 1338–1348.

    CAS  Google Scholar 

  136. Kim, M. H., Cho, H. S., Jung, M., Hong, M. H., Lee, S. K., Shin, B. A., et al. (2005). Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. International Journal of Oncology, 26, 1669–1674.

    CAS  PubMed  Google Scholar 

  137. Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer, 41, 2462–2478.

    CAS  PubMed  Google Scholar 

  138. Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M., & Watson, D. K. (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Research, 63, 4626–4631.

    CAS  PubMed  Google Scholar 

  139. Hahne, J. C., Okuducu, A. F., Kaminski, A., Florin, A., Soncin, F., & Wernert, N. (2005). Ets-1 expression promotes epithelial cell transformation by inducing migration, invasion and anchorage-independent growth. Oncogene, 24, 5384–5388.

    CAS  PubMed  Google Scholar 

  140. Huang, H. C., Liu, S. Y., Liang, Y., Liu, Y., Li, J. Z., & Wang, H. Y. (2005). [Transforming growth factor-beta1 stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein]. Zhonghua Yi Xue Za Zhi, 85, 328–331.

    CAS  PubMed  Google Scholar 

  141. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253, 269–285.

    CAS  PubMed  Google Scholar 

  142. White, L. A., Maute, C., & Brinckerhoff, C. E. (1997). ETS sites in the promoters of the matrix metalloproteinases collagenase (MMP-1) and stromelysin (MMP-3) are auxiliary elements that regulate basal and phorbol-induced transcription. Connective Tissue Research, 36, 321–335.

    Article  CAS  PubMed  Google Scholar 

  143. Wilson, L. A., Gemin, A., Espiritu, R., & Singh, G. (2005). Ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB Journal, 19, 2085–2087.

    CAS  PubMed  Google Scholar 

  144. Roberts, A. B., Russo, A., Felici, A., & Flanders, K. C. (2003). Smad3: A key player in pathogenetic mechanisms dependent on TGF-beta. Annals of the New York Academy of Sciences, 995, 1–10.

    Article  CAS  PubMed  Google Scholar 

  145. Leivonen, S. K., Ala-Aho, R., Koli, K., Grenman, R., Peltonen, J., & Kahari, V. M. (2006). Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene, 25, 2588–2600.

    CAS  PubMed  Google Scholar 

  146. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

    CAS  PubMed  Google Scholar 

  147. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558.

    CAS  PubMed  Google Scholar 

  148. Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.

    CAS  PubMed  Google Scholar 

  149. Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development, 132, 3151–3161.

    CAS  PubMed  Google Scholar 

  150. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.

    CAS  PubMed  Google Scholar 

  151. Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.

    CAS  PubMed  Google Scholar 

  152. Lai, W. L., & Wong, N. S. (2005). ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radical Biology & Medicine, 38, 1585–1593.

    CAS  Google Scholar 

  153. Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.

    CAS  Google Scholar 

  154. Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Molecular and Cellular Biology, 21, 2373–2383.

    CAS  PubMed  Google Scholar 

  155. Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.

    CAS  PubMed  Google Scholar 

  156. Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews, 24, 413–423.

    CAS  PubMed  Google Scholar 

  157. Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.

    CAS  PubMed  Google Scholar 

  158. Danen, E. H. (2005). Integrins: Regulators of tissue function and cancer progression. Current Pharmaceutical Design, 11, 881–891.

    CAS  PubMed  Google Scholar 

  159. Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.

    CAS  PubMed  Google Scholar 

  160. Zhu, H. J., Ross, F. P., Cao, X., & Teitelbaum, S. L. (1996). Phorbol myristate acetate transactivates the avian beta 3 integrin gene and induces alpha v beta 3 integrin expression. Journal of Cellular Biochemistry, 61, 420–429.

    CAS  PubMed  Google Scholar 

  161. Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., et al. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. Journal of Biological Chemistry, 275, 36400–36406.

    CAS  PubMed  Google Scholar 

  162. Katabami, K., Mizuno, H., Sano, R., Saito, Y., Ogura, M., Itoh, S., et al. (2005). Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clinical & Experimental Metastasis, 22, 539–548.

    CAS  Google Scholar 

  163. Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23, 7947–7956.

    CAS  PubMed  Google Scholar 

  164. Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.

    CAS  PubMed  Google Scholar 

  165. Turcotte, S., Desrosiers, R. R., & Beliveau, R. (2003). HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science, 116(Pt. 11), 2247–2260.

    CAS  PubMed  Google Scholar 

  166. Wells, A. (2000). Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research, 78, 31–101.

    CAS  PubMed  Google Scholar 

  167. Kataoka, H., Tanaka, H., Nagaike, K., Uchiyama, S., & Itoh, H. (2003). Role of cancer cell–stroma interaction in invasive growth of cancer cells. Human Cell, 16, 1–14.

    Article  PubMed  Google Scholar 

  168. Miura, Y., Kozuki, Y., & Yagasaki, K. (2003). Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochemical and Biophysical Research Communications, 305, 160–165.

    CAS  PubMed  Google Scholar 

  169. Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.

    CAS  PubMed  Google Scholar 

  170. Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., et al. (2006). Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: Protective effect of PKA. Free Radical Biology & Medicine, 40, 2005–2017.

    CAS  Google Scholar 

  171. Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., & Chiarugi, P. (2006). Redox regulation of beta-actin during integrin-mediated cell adhesion. Journal of Biological Chemistry, 281(32), 22983–22991.

    Google Scholar 

  172. Pathak, S. K., Sharma, R. A., Steward, W. P., Mellon, J. K., Griffiths, T. R., & Gescher, A. J. (2005). Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: Targets for chemopreventive strategies. European Journal of Cancer, 41, 61–70.

    CAS  PubMed  Google Scholar 

  173. Sikka, S. C. (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Current Medicinal Chemistry, 10, 2679–2692.

    CAS  PubMed  Google Scholar 

  174. Nishikawa, M., Hyoudou, K., Kobayashi, Y., Umeyama, Y., Takakura, Y., & Hashida, M. (2005). Inhibition of metastatic tumor growth by targeted delivery. Journal of Controlled Release, 109, 101–107.

    CAS  PubMed  Google Scholar 

  175. Gupta, A., Butts, B., Kwei, K. A., Dvorakova, K., Stratton, S. P., Briehl M. M., et al. (2001). Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Letters, 173, 115–125.

    CAS  PubMed  Google Scholar 

  176. Nishino, H., Tokuda, H., Satomi, Y., Masuda, M., Osaka, Y., Yogosawa, S., et al. (2004). Cancer prevention by antioxidants. Biofactors, 22, 57–61.

    CAS  PubMed  Google Scholar 

  177. Lin, J. K., Liang, Y. C., & Lin-Shiau, S. Y. (1999). Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911–915.

    CAS  PubMed  Google Scholar 

  178. Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., & Kamata N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial–mesenchymal transition in human squamous carcinoma cells. International Journal of Oncology, 28, 487–496.

    CAS  PubMed  Google Scholar 

  179. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253(1–2), 269–285.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Sheng Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25, 695–705 (2006). https://doi.org/10.1007/s10555-006-9037-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9037-8

Keywords

Navigation