Skip to main content

Advertisement

Log in

Metastasis and stem cell pathways

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Recent studies have described a small population of self-renewing and multipotent cells within tumors termed “cancer stem cells.” These cells share many traits with somatic and embryonic stem cells and are thought to be responsible for driving tumor progression in a growing list of neoplastic diseases. Cells within solid tumors encounter hypoxia due to poor vascular function. Both long-standing and emerging data describe hypoxic effects on somatic and embryonic stem cells, and it is likely that hypoxia also has profound effects on cancer stem cells. These effects include the activation of pathways that induce the dedifferentiation of cancer cells, the maintenance of stem cell identity, and increased metastatic potential. Hypoxia may contribute to tumor progression by specifically impacting these pathways in cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  2. Pouyssegur, J., Dayan, F., & Mazure, N. M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 441, 437–443.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, J. M., & Wilson, W. R. (2004). Exploiting tumour hypoxia in cancer treatment. Nature Reviews Cancer, 4, 437–447.

    Article  PubMed  CAS  Google Scholar 

  4. Hockel, M., & Vaupel, P. (2001). Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. Journal of the National Cancer Institute, 93, 266–276.

    Article  PubMed  CAS  Google Scholar 

  5. Graeber, T. G., Osmanian, C., Jacks, T., Housman, D. E., Koch, C. J., Lowe, S. W., et al. (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature, 379, 88–91.

    Article  PubMed  CAS  Google Scholar 

  6. Rodesch, F., Simon, P., Donner, C., & Jauniaux, E. (1992). Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstetrics & Gynecology, 80, 283–285.

    CAS  Google Scholar 

  7. Lee, Y. M., Jeong, C. H., Koo, S. Y., Son, M. J., Song, H. S., Bae, S. K. et al., (2001). Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development. Developmental Dynamics, 220, 175–186.

    Article  PubMed  CAS  Google Scholar 

  8. Morriss, G. M., & New, D. A. (1979). Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. Journal of Embryology and Experimental Morphology, 54, 17–35.

    PubMed  CAS  Google Scholar 

  9. Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15, 551–578.

    Article  PubMed  CAS  Google Scholar 

  10. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A., & Simon, M. C. (1997). Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature, 386, 403–407.

    Article  PubMed  CAS  Google Scholar 

  11. Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., et al. (1998). Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes & Development, 12, 149–162.

    Article  CAS  Google Scholar 

  12. Ryan, H. E., Lo, J., & Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO Journal, 17, 3005–3015.

    Article  PubMed  CAS  Google Scholar 

  13. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3, 895–902.

    Article  PubMed  CAS  Google Scholar 

  14. Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.

    Article  PubMed  CAS  Google Scholar 

  15. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  CAS  Google Scholar 

  16. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  17. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell, 11, 69–82.

    Article  PubMed  CAS  Google Scholar 

  18. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  19. O’Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.

    Article  PubMed  CAS  Google Scholar 

  20. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.

    Article  PubMed  CAS  Google Scholar 

  21. Morrison, S. J., Shah, N. M., & Anderson, D. J. (1997). Regulatory mechanisms in stem cell biology. Cell, 88, 287–298.

    Article  PubMed  CAS  Google Scholar 

  22. Moore, K. A., & Lemischka, I. R. (2006). Stem cells and their niches. Science, 311, 1880–1885.

    Article  PubMed  CAS  Google Scholar 

  23. Joseph, N. M., & Morrison, S. J. (2005). Toward an understanding of the physiological function of Mammalian stem cells. Developments in Cell, 9, 173–183.

    Article  CAS  Google Scholar 

  24. Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.

    Article  PubMed  CAS  Google Scholar 

  25. Ohlstein, B., Kai, T., Decotto, E., & Spradling, A. (2004). The stem cell niche: Theme and variations. Current Opinion in Cell Biology, 16, 693–699.

    Article  PubMed  CAS  Google Scholar 

  26. Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441, 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  27. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

  28. Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66, 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  29. Ezashi, T., Das, P., & Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 4783–4788.

    Article  PubMed  CAS  Google Scholar 

  30. Cipolleschi, M. G., Dello Sbarba, P., & Olivotto, M. (1993). The role of hypoxia in the maintenance of hematopoietic stem cells. Blood, 82, 2031–2037.

    PubMed  CAS  Google Scholar 

  31. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., & Morrison, S. J. (2005). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 121, 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  32. Danet, G. H., Pan, Y., Luongo, J. L., Bonnet, D. A., & Simon, M. C. (2003). Expansion of human SCID-repopulating cells under hypoxic conditions. Journal of Clinical Investigation, 112, 126–135.

    Article  PubMed  CAS  Google Scholar 

  33. Adelman, D. M., Maltepe, E., & Simon, M. C. (1999). Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes & Development, 13, 2478–2483.

    Article  CAS  Google Scholar 

  34. Adelman, D. M., Gertsenstein, M., Nagy, A., Simon, M. C., & Maltepe, E. (2000). Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes & Development, 14, 3191–3203.

    Article  CAS  Google Scholar 

  35. Ramirez-Bergeron, D. L., Runge, A., Dahl, K. D., Fehling, H. J., Keller, G., & Simon, M. C. (2004). Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development, 131, 4623–4634.

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez-Bergeron, D. L., Runge, A., Adelman, D. M., Gohil, M., & Simon, M. C. (2006). HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Developmental Cell, 11, 81–92.

    Article  PubMed  CAS  Google Scholar 

  37. Genbacev, O., Zhou, Y., Ludlow, J. W., & Fisher, S. J. (1997). Regulation of human placental development by oxygen tension. Science, 277, 1669–1672.

    Article  PubMed  CAS  Google Scholar 

  38. Morrison, S. J., Csete, M., Groves, A. K., Melega, W., Wold, B., & Anderson, D. J. (2000). Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. Journal of Neuroscience, 20, 7370–7376.

    PubMed  CAS  Google Scholar 

  39. Studer, L., Csete, M., Lee, S. H., Kabbani, N., Walikonis, J., Wold, B., et al. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. Journal of Neuroscience, 20, 7377–7383.

    PubMed  CAS  Google Scholar 

  40. Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Nature Medicine, 12, 296–300.

    Article  CAS  Google Scholar 

  41. Bjerkvig, R., Tysnes, B. B., Aboody, K. S., Najbauer, J., & Terzis, A. J. (2005). Opinion: The origin of the cancer stem cell: current controversies and new insights. Nature Reviews. Cancer, 5, 899–904.

    Article  PubMed  CAS  Google Scholar 

  42. Loh, Y. H., Wu, Q, Chew, J. L., Vega, V. B., Zhang, W., Chen, X., et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  43. Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry, 270, 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N., & Semenza, G. L. (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Molecular Cell, 25, 207–217.

    Article  PubMed  CAS  Google Scholar 

  45. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B., & Simon, M. C. (2003). Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Molecular and Cellular Biology, 23, 9361–9374.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, V., Davis, D. A., Haque, M., Huang, L. E., & Yarchoan, R. (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Research, 65, 3299–3306.

    PubMed  CAS  Google Scholar 

  47. Raval, R. R., Lau, K. W., Tran, M. G., Sowter, H. M., Mandriota, S. J., Li, J. L., et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Molecular and Cellular Biology, 25, 5675–5686.

    Article  PubMed  CAS  Google Scholar 

  48. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3, 721–732.

    Article  PubMed  CAS  Google Scholar 

  49. Covello, K. L., Kehler, J., Yu, H., Gordan, J. D., Arsham, A. M., Hu, C. J., et al. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development, 20, 557–570.

    Article  CAS  Google Scholar 

  50. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–391.

    Article  PubMed  CAS  Google Scholar 

  51. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  52. Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., et al. (2005). Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell, 123, 917–929.

    Article  PubMed  CAS  Google Scholar 

  53. Gidekel, S., Pizov, G., Bergman, Y., & Pikarsky, E. (2003). Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell, 4, 361–370.

    Article  PubMed  CAS  Google Scholar 

  54. Covello, K. L., Simon, M. C., & Keith, B. (2005). Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Research, 65, 2277–2286.

    Article  PubMed  CAS  Google Scholar 

  55. Wilson, A., & Radtke, F. (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Letters, 580, 2860–2868.

    Article  PubMed  CAS  Google Scholar 

  56. Nofziger, D., Miyamoto, A., Lyons, K. M., & Weinmaster, G. (1999). Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development, 126, 1689–1702.

    PubMed  CAS  Google Scholar 

  57. Weng, A. P., & Aster, J. C. (2004). Multiple niches for Notch in cancer: Context is everything. Current Opinion in Genetics & Development, 14, 48–54.

    Article  CAS  Google Scholar 

  58. Gustafsson, M. V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., et al. (2005). Hypoxia requires notch signaling to maintain the undifferentiated cell state. Developments in Cell, 9, 617–628.

    Article  CAS  Google Scholar 

  59. Kaidi, A., Williams, A. C., & Paraskeva, C. (2007). Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nature Cell Biology.

  60. Koshiji M., Kageyama Y., Pete E.A., Horikawa I., Barrett J.C., & Huang L.E. (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO Journal, 23, 1949–1956.

    Article  PubMed  CAS  Google Scholar 

  61. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A., & Simon, M. C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell (in press).

  62. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  63. Koshiji, M., To, K. K., Hammer, S., Kumamoto, K., Harris, A. L., Modrich, P., et al. (2005). HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Molecular Cell, 17, 793–803.

    Article  PubMed  CAS  Google Scholar 

  64. Nelson, D. A., Tan, T. T., Rabson, A. B., Anderson, D., Degenhardt, K., & White, E. (2004). Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes & Development, 18, 2095–2107.

    Article  CAS  Google Scholar 

  65. Axelson, H., Fredlund, E., Ovenberger, M., Landberg, G., & Pahlman, S. (2005). Hypoxia-induced dedifferentiation of tumor cells—A mechanism behind heterogeneity and aggressiveness of solid tumors. Seminars in Cell & Developmental Biology, 16, 554–563.

    Article  CAS  Google Scholar 

  66. Jogi, A., Ora, I., Nilsson, H., Lindeheim, A., Makino, Y., Poellinger, L., et al. (2002). Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 99, 7021–7026.

    Article  PubMed  CAS  Google Scholar 

  67. Helczynska, K., Kronblad, A., Jogi, A., Nilsson, E., Beckman, S., Landberg, G., et al. (2003). Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ. Cancer Research, 63, 1441–1444.

    PubMed  CAS  Google Scholar 

  68. Lofstedt, T., Jogi, A., Sigvardsson, M., Gradin K, Poellinger, L., Pahlman, S., et al. (2004). Induction of ID2 expression by hypoxia-inducible factor-1: A role in dedifferentiation of hypoxic neuroblastoma cells. Journal of Biological Chemistry, 279, 39223–39231.

    Article  PubMed  CAS  Google Scholar 

  69. Liu, L., & Simon, M. C. (2004). Regulation of transcription and translation by hypoxia. Cancer Biology & Therapy, 3, 492–497.

    Article  CAS  Google Scholar 

  70. Arsham, A. M., Howell, J. J., & Simon, M. C. (2003). A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. Journal of Biological Chemistry, 278, 29655–29660.

    Article  PubMed  CAS  Google Scholar 

  71. Connolly. E, Braunstein, S., Formenti, S., & Schneider, R. J. (2006). Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Molecular and Cellular Biology, 26, 3955–3965.

    Article  PubMed  CAS  Google Scholar 

  72. Fingar, D. C., Richardson, C. J., Tee, A. R., Cheatham, L., Tsou, C., & Blenis, J. (2004). mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Molecular and Cellular Biology, 24, 200–216.

    Article  PubMed  CAS  Google Scholar 

  73. Fingar, D. C., Salama, S., Tsou, C., Harlow, E., & Blenis, J. (2002). Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes & Development, 16, 1472–1487.

    Article  CAS  Google Scholar 

  74. Easton, J. B., & Houghton, P. J. (2006). mTOR and cancer therapy. Oncogene, 25, 6436–6446.

    Article  PubMed  CAS  Google Scholar 

  75. Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126, 955–968.

    Article  PubMed  CAS  Google Scholar 

  76. Li, F., Tiede, B., Massague, J., & Kang, Y. (2007). Beyond tumorigenesis: cancer stem cells in metastasis. Cell Research, 17, 3–14.

    Article  PubMed  CAS  Google Scholar 

  77. Fidler, I. J., & Talmadge, J. E. (1986). Evidence that intravenously derived murine pulmonary melanoma metastases can originate from the expansion of a single tumor cell. Cancer Research, 46, 5167–5171.

    PubMed  CAS  Google Scholar 

  78. Imai, T., Horiuchi, A., Wang, C., Oka, K., Ohira, S., & Nikaido, T., et al. (2003). Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. American Journal of Pathology, 163, 1437–1447.

    PubMed  CAS  Google Scholar 

  79. Esteban, M. A., Tran, M. G., Harten, S. K., Hill, P., Castellanos, M. C., Chandra, A., et al. (2006). Regulation of E-cadherin expression by VHL and hypoxia-inducible factor. Cancer Research, 66, 3567–3575.

    Article  PubMed  CAS  Google Scholar 

  80. Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., & Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel–Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.

    Article  PubMed  CAS  Google Scholar 

  81. Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhofer, N., Kong, C., Le, Q. T., et al. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 440, 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  82. Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P.M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.

    Article  PubMed  Google Scholar 

  83. Boccaccio C., & Comoglio, P. M. (2006). Invasive growth: A MET-driven genetic programme for cancer and stem cells. Nature Reviews. Cancer, 6, 637–645.

    Article  PubMed  CAS  Google Scholar 

  84. Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E. J., & Krek, W. (2003). Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature, 425, 307–311.

    Article  PubMed  CAS  Google Scholar 

  85. Chambers. A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  86. Dean, M., Fojo, T., & Bates S. (2005). Tumour stem cells and drug resistance. Nature Reviews. Cancer, 5, 275–284.

    Article  PubMed  CAS  Google Scholar 

  87. Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K. E., et al. (2004). The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. Journal of Biological Chemistry, 279, 24218–24225.

    Article  PubMed  CAS  Google Scholar 

  88. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760.

    Article  PubMed  CAS  Google Scholar 

  89. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I., & Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Current Opinion in Genetics & Development, 14, 43–47.

    Article  CAS  Google Scholar 

  90. Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., et al. (2006). Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell, 10, 413–423.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celeste Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnhart, B.C., Simon, M.C. Metastasis and stem cell pathways. Cancer Metastasis Rev 26, 261–271 (2007). https://doi.org/10.1007/s10555-007-9053-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9053-3

Keywords

Navigation