Skip to main content

Advertisement

Log in

Immune cells as mediators of solid tumor metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Outgrowths of disseminated metastases remain the primary cause of mortality in cancer patients; however, molecular and cellular mechanisms regulating metastatic spread remain largely elusive. Recent insights into these mechanisms have refined the seed and soil hypothesis and it is now recognized that metastasis of solid tumors requires collaborative interactions between malignant cells and a diverse assortment of “activated” stromal cells at both primary and secondary tumor locations. Specifically, persistent pro-tumor immune responses (inflammation), now generally accepted as potentiating primary tumor development, are also being recognized as mediators of cancer metastasis. Thus, novel anti-cancer therapeutic strategies targeting molecular and/or cellular mechanisms regulating these collaborative interactions may provide efficacious relief for metastatic disease. This review focuses on recent literature revealing new mechanisms whereby immune cells regulate metastatic progression, with a primary focus on breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics. CA A Cancer Journal for Clinicians, 57, 43–66 2007.

    Article  PubMed  Google Scholar 

  2. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Article  Google Scholar 

  3. Karin, M., & Greten, F. R. (2005). NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5, 749–759.

    Article  PubMed  CAS  Google Scholar 

  4. Coussens, L. M., & Werb, Z. (2001). Inflammatory cells and cancer: Think different!. Journal of Experimental Medicine, 193, F23–F26.

    Article  PubMed  CAS  Google Scholar 

  5. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill, F., & Coussens, L. M. (2004). Cancer: An inflammatory link. Nature, 431, 405–406.

    Article  PubMed  CAS  Google Scholar 

  7. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.

    Article  PubMed  CAS  Google Scholar 

  8. Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.

    Article  PubMed  CAS  Google Scholar 

  9. de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.

    Article  PubMed  CAS  Google Scholar 

  10. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.

    Article  PubMed  CAS  Google Scholar 

  11. Chambers, A. F., Naumov, G. N., Varghese, H. J., Nadkarni, K. V., MacDonald, I. C., & Groom, A. C. (2001). Critical steps in hematogenous metastasis: An overview. Surgical Oncology Clinics of North America, 10, 243–255 vii.

    PubMed  CAS  Google Scholar 

  12. Folkman, J. (1992). The role of angiogenesis in tumor growth. Seminars in Cancer Biology, 3, 65–71.

    PubMed  CAS  Google Scholar 

  13. Woodhouse, E. C., Chuaqui, R. F., & Liotta, L. A. (1997). General mechanisms of metastasis. Cancer, 80, 1529–1537.

    Article  PubMed  CAS  Google Scholar 

  14. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  15. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    Article  PubMed  CAS  Google Scholar 

  16. Wilson, J., & Balkwill, F. (2002). The role of cytokines in the epithelial cancer microenvironment. Seminars in Cancer Biology, 12, 113–120.

    Article  PubMed  CAS  Google Scholar 

  17. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M., & Varki, A. (2002). Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proceedings of the National Academy of Sciences of the United States of America, 99, 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  18. Laakkonen, P., Porkka, K., Hoffman, J. A., & Ruoslahti, E. (2002). A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nature Medicine, 8, 751–755.

    CAS  Google Scholar 

  19. Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell, 124, 823–835.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, J., & Lanier, L. L. (2003). Natural killer cells and cancer. Advances in Cancer Research, 90, 127–156.

    PubMed  CAS  Google Scholar 

  21. Theoharides, T. C., & Conti, P. (2004). Mast cells: The Jekyll and Hyde of tumor growth. Trends in Immunology, 25, 235–241.

    Article  PubMed  CAS  Google Scholar 

  22. Condeelis, J., & Pollard, J. W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.

    Article  PubMed  CAS  Google Scholar 

  23. Mantovani, A., Allavena, P., & Sica, A. (2004). Tumour-associated macrophages as a prototypic type II polarised phagocyte population: Role in tumour progression. European Journal of Cancer, 40, 1660–1667.

    Article  PubMed  CAS  Google Scholar 

  24. Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65, 5278–5283.

    Article  PubMed  CAS  Google Scholar 

  25. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.

    Article  PubMed  CAS  Google Scholar 

  26. Bergers, G., & Benjamin, L. E. (2003). Angiogenesis: Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.

    Article  PubMed  CAS  Google Scholar 

  27. Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Research, 67, 2649–2656.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, T. H., Seng, S., Sekine, M., Hinton, C., Fu, Y., Avraham, H. K., et al. (2007). Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Medicine, 4, e186.

    Article  PubMed  CAS  Google Scholar 

  29. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–744.

    Article  PubMed  CAS  Google Scholar 

  30. Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13, 1382–1397.

    CAS  Google Scholar 

  31. Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson-Smith, T. M., Isaacsohn, I., Mercer, C. A., Zhou, M., Van Rooijen, N., Husseinzadeh, N., et al. (2007). Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Research, 67, 5708–5716.

    Article  PubMed  CAS  Google Scholar 

  33. Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.

    PubMed  CAS  Google Scholar 

  34. Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 7, 147–162.

    Article  PubMed  Google Scholar 

  35. Lin, E. Y., Li, J. F., Gnatovskiy, L., Deng, Y., Zhu, L., Grzesik, D. A., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66, 11238–11246.

    Article  PubMed  CAS  Google Scholar 

  36. O’Sullivan, C., & Lewis, C. E. (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. Journal of Pathology, 172, 229–235.

    Article  PubMed  CAS  Google Scholar 

  37. Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.

    Article  PubMed  Google Scholar 

  38. Bolat, F., Kayaselcuk, F., Nursal, T. Z., Yagmurdur, M. C., Bal, N., & Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: Correlations with prognostic parameters. Journal of Experimental & Clinical Cancer Research, 25, 365–372.

    CAS  Google Scholar 

  39. Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density. Oncology Reports, 14, 425–431.

    PubMed  CAS  Google Scholar 

  40. Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., et al. (2004). Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Research, 24, 3335–3342.

    PubMed  Google Scholar 

  41. Oosterling, S. J., van der Bij, G. J., Meijer, G. A., Tuk, C. W., van Garderen, E., van Rooijen, N., et al. (2005). Macrophages direct tumour histology and clinical outcome in a colon cancer model. Journal of Pathology, 207, 147–155.

    Article  PubMed  Google Scholar 

  42. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.

    Article  PubMed  CAS  Google Scholar 

  43. Ribatti, D., Crivellato, E., Roccaro, A. M., Ria, R., & Vacca, A. (2004). Mast cell contribution to angiogenesis related to tumour progression. Clinical & Experimental Allergy, 34, 1660–1664.

    Article  CAS  Google Scholar 

  44. Ribatti, D., Vacca, A., Nico, B., Crivellato, E., Roncali, L., & Dammacco, F. (2001). The role of mast cells in tumour angiogenesis. British Journal of Haematology, 115, 514–521.

    Article  PubMed  CAS  Google Scholar 

  45. Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: Potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.

    PubMed  CAS  Google Scholar 

  46. Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67, 4507–4513.

    Article  PubMed  CAS  Google Scholar 

  47. De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8, 211–226.

    Article  PubMed  CAS  Google Scholar 

  48. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S. (2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. Journal of Immunology, 176, 284–290.

    CAS  Google Scholar 

  49. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews. Cancer, 2, 161–174.

    Article  PubMed  CAS  Google Scholar 

  50. Mueller, M. M., & Fusenig, N. E. (2004). Friends or foes—Bipolar effects of the tumour stroma in cancer. Nature Reviews. Cancer, 4, 839–849.

    Article  PubMed  CAS  Google Scholar 

  51. Joyce, J. A., & Hanahan, D. (2004). Multiple roles for cysteine cathepsins in cancer. Cell Cycle, 3, 1516–1619.

    PubMed  CAS  Google Scholar 

  52. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., & Quaranta, V. (1997). Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 277, 225–228.

    Article  PubMed  CAS  Google Scholar 

  53. Pirila, E., Ramamurthy, N. S., Sorsa, T., Salo, T., Hietanen, J., & Maisi, P. (2003). Gelatinase A (MMP-2), collagenase-2 (MMP-8), and laminin-5 gamma2-chain expression in murine inflammatory bowel disease (ulcerative colitis). Digestive Diseases and Sciences, 48, 93–98.

    Article  PubMed  Google Scholar 

  54. Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.

    Article  PubMed  CAS  Google Scholar 

  55. van Kempen, L. C., de Visser, K. E., & Coussens, L. M. (2006). Inflammation, proteases and cancer. European Journal of Cancer, 42, 728–734.

    Article  PubMed  CAS  Google Scholar 

  56. Cheng, K., Xie, G., & Raufman, J. P. (2007). Matrix metalloproteinase-7-catalyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical Pharmacology, 73, 1001–1012.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.

    Article  PubMed  CAS  Google Scholar 

  58. Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., et al. (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes & Development, 20, 543–556.

    Article  CAS  Google Scholar 

  59. Vasiljeva, O., Papazoglou, A., Kruger, A., Brodoefel, H., Korovin, M., Deussing, J., et al. (2006). Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Research, 66, 5242–5250.

    Article  PubMed  CAS  Google Scholar 

  60. Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.

    PubMed  Google Scholar 

  61. Hagemann, T., Wilson, J., Kulbe, H., Li, N. F., Leinster, D. A., Charles, K., et al. (2005). Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. Journal of Immunology, 175, 1197–1205.

    CAS  Google Scholar 

  62. Scott, K. A., Arnott, C. H., Robinson, S. C., Moore, R. J., Thompson, R. G., Marshall, J. F., et al. (2004). TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene, 23, 6954–6966.

    Article  PubMed  CAS  Google Scholar 

  63. Szlosarek, P. W., Grimshaw, M. J., Kulbe, H., Wilson, J. L., Wilbanks, G. D., Burke, F., et al. (2006). Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Molecular Cancer Therapeutics, 5, 382–390.

    Article  PubMed  CAS  Google Scholar 

  64. Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42, 745–750.

    Article  PubMed  CAS  Google Scholar 

  65. Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., et al. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature, 446, 690–694.

    Article  PubMed  CAS  Google Scholar 

  66. Abraham, S., Zhang, W., Greenberg, N., & Zhang, M. (2003). Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. Journal of Urology, 169, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  67. Sager, R., Sheng, S., Pemberton, P., & Hendrix, M. J. (1997). Maspin. A tumor suppressing serpin. Advances in Experimental Medicine and Biology, 425, 77–88.

    PubMed  CAS  Google Scholar 

  68. Chen, E. I., & Yates, J. R. (2006). Maspin and tumor metastasis. IUMB Life, 58, 25–29.

    Article  CAS  Google Scholar 

  69. Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440, 692–696.

    Article  PubMed  CAS  Google Scholar 

  70. Shi, H. Y., Zhang, W., Liang, R., Kittrell, F., Templeton, N. S., Medina, D., et al. (2003). Modeling human breast cancer metastasis in mice: Maspin as a paradigm. Histology and Histopathology, 18, 201–206.

    PubMed  CAS  Google Scholar 

  71. Lockett, J., Yin, S., Li, X., Meng, Y., & Sheng, S. (2006). Tumor suppressive maspin and epithelial homeostasis. Journal of Cellular Biochemistry, 97, 651–660.

    Article  PubMed  CAS  Google Scholar 

  72. Gorden, D. L., Fingleton, B., Crawford, H. C., Jansen, D. E., Lepage, M., & Matrisian, L. M. (2007). Resident stromal cell-derived MMP-9 promotes the growth of colorectal metastases in the liver microenvironment. International Journal of Cancer, 121, 495–500.

    Article  CAS  Google Scholar 

  73. Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7, 485–496.

    Article  PubMed  CAS  Google Scholar 

  74. Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.

    Article  PubMed  CAS  Google Scholar 

  75. Leek, R. D., Hunt, N. C., Landers, R. J., Lewis, C. E., Royds, J. A., & Harris, A. L. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. Journal of Pathology, 190, 430–436.

    Article  PubMed  CAS  Google Scholar 

  76. Wyckoff, J. B., Segall, J. E., & Condeelis, J. S. (2000). The collection of the motile population of cells from a living tumor. Cancer Research, 60, 5401–5404.

    PubMed  CAS  Google Scholar 

  77. Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., Segall, J. E., et al. (2007). Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Research, 67, 3505–3511.

    Article  PubMed  CAS  Google Scholar 

  78. Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.

    Article  PubMed  CAS  Google Scholar 

  79. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.

    PubMed  CAS  Google Scholar 

  80. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–300.

    Article  PubMed  CAS  Google Scholar 

  81. Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66, 259–266.

    Article  PubMed  CAS  Google Scholar 

  82. Hiratsuka, S., Watanabe, A., Aburatani, H., & Maru, Y. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8, 1369–1375.

    Article  PubMed  CAS  Google Scholar 

  83. Lin, E. Y., & Pollard, J. W. (2004). Macrophages: Modulators of breast cancer progression. Novartis Foundation Symposium, 256, 158–168 discussion 68–72, 259–69.

    PubMed  CAS  Google Scholar 

  84. Kaplan, R. N., Psaila, B., & Lyden, D. (2006). Bone marrow cells in the ‘pre-metastatic niche’: Within bone and beyond. Cancer and Metastasis Reviews, 25, 521–529.

    Article  PubMed  Google Scholar 

  85. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    Article  PubMed  CAS  Google Scholar 

  86. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  87. Psaty, B. M., & Furberg, C. D. (2005). COX-2 inhibitors—Lessons in drug safety. New England Journal of Medicine, 352, 1133–1135.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the scientists who made contributions to the areas of research reviewed here that were not cited due to space constraints. The authors acknowledge support from the American Cancer Society (DDN), a P2-M postdoctoral grant from the Swedish Research Council (MJ), and grants from the National Institutes of Health, Sandler Program in Basic Sciences, and a Department of Defense Era of Hope Scholar Award (LMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Coussens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeNardo, D.G., Johansson, M. & Coussens, L.M. Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27, 11–18 (2008). https://doi.org/10.1007/s10555-007-9100-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9100-0

Keywords

Navigation