Skip to main content

Advertisement

Log in

Osteopontin: regulation in tumor metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Osteopontin is a secreted phosphoprotein that has been implicated as an important mediator of tumor metastasis and has been investigated for use as a biomarker for advanced disease and as a potential therapeutic target in the regulation of cancer metastasis. The OPN DNA sequence is highly conserved and the protein contains several important functional domains including αvβ integrin and CD44 binding sites. High levels of OPN expression correlate with tumor invasion, progression or metastasis in multiple cancer. Studies demonstrate that osteopontin mediates the molecular mechanisms which determine metastatic spread, such as prevention of apoptosis, extracellular matrix proteolysis and remodeling, cell migration, evasion of host-immune cells and neovascularization. Transcriptional regulation of OPN is complex and involves multiple pathways, including AP-1, Myc, v-Src, Runx/CBF, TGF-B/BMPs/Smad/Hox, and Wnt/ß–catenin/APC/GSK–3ß/Tcf-4. The current state of knowledge of OPN biology suggests that it is an attractive target for therapeutic modulation of metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Senger, D. R., Wirth, D. F., & Hynes, R. O. (1979). Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell, 16(4), 885–893.

    PubMed  CAS  Google Scholar 

  2. Fisher, L. W., Hawkins, G. R., Tuross, N., & Termine, J. D, (1987). Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. Journal of Biological Chemistry, 262(20), 9702–9708.

    PubMed  CAS  Google Scholar 

  3. Kiefer, M. C., Bauer, D. M., & Barr, P. J. (1989). The cDNA and derived amino acid sequence for human osteopontin. Nucleic Acids Research, 17(8), 3306.

    PubMed  CAS  Google Scholar 

  4. Young, M. F., Kerr, J. M., Termine, J. D., Wewer, U. M., Wang, M. G., McBride, O. W., et al. (1990). cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics, 7(4), 491–502.

    PubMed  CAS  Google Scholar 

  5. Wrana, J. L., Zhang, Q., & Sodek, J. (1989). Full length cDNA sequence of porcine secreted phosphoprotein-I (SPP-I, osteopontin). Nucleic Acids Research, 17(23), 10119–10123.

    PubMed  CAS  Google Scholar 

  6. Smith, J. H., & Denhardt, D. T. (1987). Molecular cloning of a tumor promoter-inducible mRNA found in JB6 mouse epidermal cells: induction is stable at high, but not at low, cell densities. Journal of Cellular Biochemistry, 34(1), 13–22.

    PubMed  CAS  Google Scholar 

  7. Craig, A. M., Nemir, M., Mukherjee, B. B., Chambers, A. F., & Denhardt, D. T. (1988). Identification of the major phosphoprotein secreted by many rodent cell lines as 2ar/osteopontin: enhanced expression in H-ras-transformed 3T3 cells. Biochemical and Biophysical Research Communications, 157(1), 166–173.

    PubMed  CAS  Google Scholar 

  8. Shiraga, H., Min, W., VanDusen, W. J., Clayman, M. D., Miner, D., Terrell, C. H., et al. (1992). Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proceedings of the National Academy of Sciences of the United States of America, 89(1), 426–430.

    PubMed  CAS  Google Scholar 

  9. Patarca, R., Freeman, G. J., Singh, R. P., Wei, F. Y., Durfee, T., Blattner, F., et al. (1989). Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. Journal of Experimental Medicine, 170(1), 145–161.

    PubMed  CAS  Google Scholar 

  10. Craig, A. M., & Denhardt, D. T. (1991). The murine gene encoding secreted phosphoprotein 1 (osteopontin): Promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene, 100, 163–171.

    PubMed  CAS  Google Scholar 

  11. Denhardt, D. T., & Guo, X. (1993). Osteopontin: A protein with diverse functions. FASEB Journal, 7(15), 1475–1482.

    PubMed  CAS  Google Scholar 

  12. Senger, D. R., Perruzzi, C. A., Papadopoulos-Sergiou, A., & Van de Water, L. (1994). Adhesive properties of osteopontin: Regulation by a naturally occurring thrombin-cleavage in close proximity to the GRGDS cell-binding domain. Molecular Biology of the Cell, 5(5), 565–574.

    PubMed  CAS  Google Scholar 

  13. Attur, M. G., Dave, M. N., Stuchin, S., Kowalski, A. J., Steiner, G., Abramson, S. B., et al. (2001). Osteopontin: an intrinsic inhibitor of inflammation in cartilage. Arthritis and Rheumatism, 44(3), 578–584.

    PubMed  CAS  Google Scholar 

  14. Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086.

    CAS  Google Scholar 

  15. Johnson, R. J., Gordon, K. L., Giachelli, C., Kurth, T., Skelton, M. M., & Cowley, A. W. (2000). Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat. Journal de L’hypertension, 18(10), 1497–1505.

    CAS  Google Scholar 

  16. Noble, B. S., & Reeve, J. (2000). Osteocyte function, osteocyte death and bone fracture resistance. Molecular and Cellular Endocrinology, 159(1–2), 7–13.

    PubMed  CAS  Google Scholar 

  17. Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.

    PubMed  CAS  Google Scholar 

  18. Thomas, S. E., Lombard, I. D., Giachelli, C., Bohle, A., & Johnson, R. J. (1998). Osteopontin expression, tubulointerstitial disease, and essential hypertension. American Journal of Hypertension, 11(8), 954–961.

    PubMed  CAS  Google Scholar 

  19. Rollo, E. E., Laskin, D. L., & Denhardt, D. T. (1996). Osteopontin inhibits nitric oxide production and cytotoxicity by activated RAW264.7 macrophages. Journal of Leukocyte Biology, 60(3), 397–404.

    PubMed  CAS  Google Scholar 

  20. Singh, K., Balligand, J. L., Fischer, T. A., Smith, T. W., & Kelly, R. A. (1995). Glucocorticoids increase osteopontin expression in cardiac myocytes and microvascular endothelial cells. Role in regulation of inducible nitric oxide synthase. Journal of Biological Chemistry, 270(47), 28471–28478.

    PubMed  CAS  Google Scholar 

  21. Feng, B., Rollo, E. E., & Denhardt, D. T. (1995). Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: Evidence from cell lines down-regulated for OPN expression by a targeted ribozyme. Clinical & Experimental Metastasis, 13(6), 453–462.

    CAS  Google Scholar 

  22. Denhardt, D. T., Lopez, C. A., Rollo, E. E., Hwang, S. M., An, X. R., & Walther, S. E. (1995). Osteopontin-induced modifications of cellular functions. Annals of the New York Academy of Sciences, 760, 127–142.

    PubMed  CAS  Google Scholar 

  23. Hwang, S. M., Wilson, P. D., Laskin, J. D., & Denhardt, D. T. (1994). Age and development-related changes in osteopontin and nitric oxide synthase mRNA levels in human kidney proximal tubule epithelial cells: Contrasting responses to hypoxia and reoxygenation. Journal of Cellular Physiology, 160(1), 61–68.

    PubMed  CAS  Google Scholar 

  24. Hwang, S. M., Lopez, C. A., Heck, D. E., Gardner, C. R., Laskin, D. L., Laskin, J. D., et al. (1994). Osteopontin inhibits induction of nitric oxide synthase gene expression by inflammatory mediators in mouse kidney epithelial cells. Journal of Biological Chemistry, 269(1), 711–715.

    PubMed  CAS  Google Scholar 

  25. Hijiya, N., Setoguchi, M., Matsuura, K., Higuchi, Y., Akizuki, S., & Yamamoto, S. (1994). Cloning and characterization of the human osteopontin gene and its promoter. Biochemical Journal, 303(1), 255–262.

    PubMed  CAS  Google Scholar 

  26. Denhardt, D. T., & Noda, M. (1998). Osteopontin expression and function: role in bone remodeling. Journal of Cell Biology, 30–31, 92–102.

    Google Scholar 

  27. O’Regan, A., & Berman, J. S. (2000). Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. International Journal of Experimental Pathology, 81(6), 373–390.

    PubMed  CAS  Google Scholar 

  28. Weber, G. F. (2001). The metastasis gene osteopontin: a candidate target for cancer therapy. Biochimica et Biophysica Acta, 1552(2), 61–85.

    PubMed  CAS  Google Scholar 

  29. Fedarko, N. S., Jain, A., Karadag, A., & Fisher, L. W. (2004). Three small integrin binding ligand N-linked glycoproteins (SIBLINGs) bind and activate specific matrix metalloproteinases. FASEB Journal, 18(6), 734–736.

    PubMed  CAS  Google Scholar 

  30. Fisher, L. W., Jain, A., Tayback, M., & Fedarko, N. S. (2004). Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clinical Cancer Research, 10(24), 8501–8511.

    PubMed  CAS  Google Scholar 

  31. Senger, D. R., Perruzzi, C. A., Gracey, C. F., Papadopoulos, A., & Tenen, D. G. (1988). Secreted phosphoproteins associated with neoplastic transformation: Close homology with plasma proteins cleaved during blood coagulation. Cancer Research, 48(20), 5770–5774.

    PubMed  CAS  Google Scholar 

  32. Senger, D. R., Perruzzi, C. A., Papadopoulos, A., & Tenen, D. G. (1989). Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochimica et Biophysica Acta, 996(1–2), 43–48.

    PubMed  CAS  Google Scholar 

  33. Bautista, D. S., Densted, T. J., Chambers, A. F., & Harris, J. F. (1996). Low-molecular-weight variants of osteopontin generated by serine proteinases in urine of patients with kidney stones. Journal of Cellular Biochemistry, 61(3), 402–409.

    PubMed  CAS  Google Scholar 

  34. Patarca, R., Saavedra, R. A., & Cantor, H. (1993). Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene. Critical Reviews in Immunology, 13(3–4), 225–246.

    PubMed  CAS  Google Scholar 

  35. Behrend, E. I., Chambers, A. F., Wilson, S. M., & Denhardt, D. T. (1993). Comparative analysis of two alternative first exons reported for the mouse osteopontin gene. Journal of Biological Chemistry, 268(15), 11172–11175.

    PubMed  CAS  Google Scholar 

  36. Yamamoto, S., Hijiya, N., Setoguchi, M., Matsuura, K., Ishida, T., Higuchi, Y., et al. (1995). Structure of the osteopontin gene and its promoter. Annals of the New York Academy of Sciences, 760, 44–58.

    PubMed  CAS  Google Scholar 

  37. Franzen, A., & Heinegard, D. (1985). Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochemical Journal, 232(3), 715–724.

    PubMed  CAS  Google Scholar 

  38. Oldberg, A., Franzen, A., & Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg–Gly–Asp cell-binding sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(23), 8819–8823.

    PubMed  CAS  Google Scholar 

  39. Saitoh, Y., Kuratsu, J., Takeshima, H., Yamamoto, S., & Ushio, Y. (1995). Expression of osteopontin in human glioma. Its correlation with the malignancy. Laboratory Investigation, 72(1), 55–63.

    PubMed  CAS  Google Scholar 

  40. Senger, D. R., Asch, B. B., Smith, B. D., Perruzzi, C. A., & Dvorak, H. F. (1983). A secreted phosphoprotein marker for neoplastic transformation of both epithelial and fibroblastic cells. Nature, 302(5910), 714–715.

    PubMed  CAS  Google Scholar 

  41. Senger, D. R., & Perruzzi, C. A. (1996). Cell migration promoted by a potent GRGDS-containing thrombin-cleavage fragment of osteopontin. Biochimica et Biophysica Acta, 1314(1–2), 13–24.

    PubMed  CAS  Google Scholar 

  42. Senger, D. R., & Perruzzi, C. A. (1985). Secreted phosphoprotein markers for neoplastic transformation of human epithelial and fibroblastic cells. Cancer Research, 45(11), 5818–5823.

    PubMed  CAS  Google Scholar 

  43. Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., et al. (2000). Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science, 287(5454), 860–864.

    PubMed  CAS  Google Scholar 

  44. Helluin, O., Chan, C., Vilaire, G., Mousa, S., DeGrado, W. F., & Bennett, J. S. (2000). The activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to intact and thrombin-cleaved osteopontin. Journal of Biological Chemistry, 275(24), 18337–18343.

    PubMed  CAS  Google Scholar 

  45. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.

    PubMed  CAS  Google Scholar 

  46. Liaw, L., Almeida, M., Hart, C. E., Schwartz, S. M., & Giachelli, C. M. (1994). Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circulation Research, 74(2), 214–224.

    PubMed  CAS  Google Scholar 

  47. Liaw, L., Lindner, V., Schwartz, S. M., Chambers, A. F., & Giachelli, C. M. (1995). Osteopontin and beta 3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg–Gly–Asp-dependent endothelial migration in vitro. Circulation Research, 77(4), 665–672.

    PubMed  CAS  Google Scholar 

  48. Liaw, L., Skinner, M. P., Raines, E. W., Ross, R., Cheresh, D. A., Schwartz, S. M., et al. (1995). The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. Journal of Clinical Investigation, 95(2), 713–724.

    PubMed  CAS  Google Scholar 

  49. Yue, T. L., McKenna, P. J., Ohlstein, E. H., Farach-Carson, M. C., Butler, W. T., Johanson, K., et al. (1994). Osteopontin-stimulated vascular smooth muscle cell migration is mediated by beta 3 integrin. Experimental Cell Research, 214(2), 459–464.

    PubMed  CAS  Google Scholar 

  50. Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R., & Smith, J. W. (1995). A biochemical characterization of the binding of osteopontin to integrins alpha v beta 1 and alpha v beta 5. Journal of Biological Chemistry, 270(44), 26232–26238.

    PubMed  CAS  Google Scholar 

  51. Smith, L. L., Cheung, H. K., Ling, L. E., Chen, J., Sheppard, D., Pytela, R., et al. (1996). Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. Journal of Biological Chemistry, 271(45), 28485–28491.

    PubMed  CAS  Google Scholar 

  52. Bayless, K. J., Meininger, G. A., Scholtz, J. M., & Davis, G. E. (1998). Osteopontin is a ligand for the alpha4beta1 integrin. Journal of Cell Science, 111(9), 1165–1174.

    PubMed  CAS  Google Scholar 

  53. Denda, S., Reichardt, L. F., & Muller, U. (1998). Identification of osteopontin as a novel ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Molecular Biology of the Cell, 9(6), 1425–1435.

    PubMed  CAS  Google Scholar 

  54. Barry, S. T., Ludbrook, S. B., Murrison, E., & Horgan, C. M. (2000). A regulated interaction between alpha5beta1 integrin and osteopontin. Biochemical and Biophysical Research Communications, 267(3), 764–769.

    PubMed  CAS  Google Scholar 

  55. Gerber, D. J., Pereira, P., Huang, S. Y., Pelletier, C., & Tonegawa, S. (1996). Expression of alpha v and beta 3 integrin chains on murine lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14698–14703.

    PubMed  CAS  Google Scholar 

  56. Reinholt, F. P., Hultenby, K., Oldberg, A., & Heinegard, D. (1990). Osteopontin–a possible anchor of osteoclasts to bone. Proceedings of the National Academy of Sciences of the United States of America, 87(12), 4473–4475.

    PubMed  CAS  Google Scholar 

  57. Singh, R. P., Patarca, R., Schwartz, J., Singh, P., & Cantor, H. (1990). Definition of a specific interaction between the early T lymphocyte activation 1 (Eta-1) protein and murine macrophages in vitro and its effect upon macrophages in vivo. Journal of Experimental Medicine, 171(6), 1931–1942.

    PubMed  CAS  Google Scholar 

  58. Bennett, J. S., Chan, C., Vilaire, G., Mousa, S. A., & DeGrado, W. F. (1997). Agonist-activated alphavbeta3 on platelets and lymphocytes binds to the matrix protein osteopontin. Journal of Biological Chemistry, 272(13), 8137–8140.

    PubMed  CAS  Google Scholar 

  59. Denhardt, D. T., Noda, M., O, , Regan, A. W., Pavlin, D., & Berman, J. S. (2001). Osteopontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. Journal of Clinical Investigation, 107(9), 1055–1061.

    PubMed  CAS  Google Scholar 

  60. Smith, L. L., & Giachelli, C. M. (1998). Structural requirements for alpha 9 beta 1-mediated adhesion and migration to thrombin-cleaved osteopontin. Experimental Cell Research, 242(1), 351–60.

    PubMed  CAS  Google Scholar 

  61. Yasuyuki, Y., Matsuura, N., Sasaki, T., Murakami, I., Schneider, H., Higashiyama, S., et al. (1999). The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. Journal of Biological Chemistry, 274(51), 36328–36334.

    Google Scholar 

  62. Hamada, Y., Nokihara, K., Okazaki, M., Fujitani, W., Matsumoto, T., Matsuo, M., et al. (2003). Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochemical and Biophysical Research Communications, 310(1), 153–157.

    PubMed  CAS  Google Scholar 

  63. Liapis, H., Flath, A., & Kitazawa, S. (1996). Integrin alpha V beta 3 expression by bone-residing breast cancer metastases. Diagnostic Molecular Pathology, 5(2), 127–135.

    PubMed  CAS  Google Scholar 

  64. Angelucci, A., Festuccia, C., D’Andrea, G., Teti, A., & Bologna, M. (2002). Osteopontin modulates prostate carcinoma invasive capacity through RGD-dependent upregulation of plasminogen activators. Biological Chemistry, 383(1), 229–234.

    PubMed  CAS  Google Scholar 

  65. Furger, K. A., Allan, A. L., Wilson, S. M., Hota, C., Vantyghem, S. A., Postenka, C. O., et al. (2003). Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Molecular Cancer Research, 1(11), 810–819.

    PubMed  CAS  Google Scholar 

  66. Senger, D. R., Ledbetter, S. R., Claffey, K. P., Papadopoulos-Sergiou, A., Peruzzi, C. A., & Detmar, M. (1996). Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. American Journal of Pathology, 149(1), 293–305.

    PubMed  CAS  Google Scholar 

  67. Scatena, M., Almeida, M., Chaisson, M. L., Fausto, N., Nicosia, R. F., & Giachelli, C. M. (1998). NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. Journal of Cell Biology, 141(4), 1083–1093.

    PubMed  CAS  Google Scholar 

  68. Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., et al. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157–1164.

    PubMed  CAS  Google Scholar 

  69. Arap, W., Pasqualini, R., & Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279(5349), 377–380.

    PubMed  CAS  Google Scholar 

  70. Bayless, K. J., Salazar, R., & Davis, G. E. (2000). RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the alpha(v)beta(3) and alpha(5)beta(1) integrins. American Journal of Pathology, 56(5), 1673–1683.

    Google Scholar 

  71. Engleman, V. W., Nickols, G. A., Ross, F. P., Horton, M. A., Griggs, D. W., Settle, S. L., et al. (1997). A peptidomimetic antagonist of the alpha(v)beta3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. Journal of Clinical Investigation, 99(9), 2284–2292.

    PubMed  CAS  Google Scholar 

  72. Rabinowich, H., Lin, W. C., Amoscato, A., Herberman, R. B., & Whiteside, T. L. (1995). Expression of vitronectin receptor on human NK cells and its role in protein phosphorylation, cytokine production, and cell proliferation. Journal of Immunology, 154(3), 1124–1135.

    CAS  Google Scholar 

  73. Goodison, S., Urquidi, V., & Tarin, D. (1999). CD44 cell adhesion molecules. Molecular Pathology, 52(4), 189–196.

    PubMed  CAS  Google Scholar 

  74. Weber, G. F., Ashkar, S., Glimcher, M. J., & Cantor, H. (1996). Receptor–ligand interaction between CD44 and osteopontin (Eta-1). Science, 271(5248), 509–512.

    PubMed  CAS  Google Scholar 

  75. Katagiri, Y. U., Sleeman, J., Fujii, H., Herrlich, P., Hotta, H., Tanaka, K., et al. (1999). CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Research, 59(1), 219–226.

    PubMed  CAS  Google Scholar 

  76. Rudzki, Z., & Jothy, S. (1997). CD44 and the adhesion of neoplastic cells. Molecular Pathology, 50(2), 7–71.

    Google Scholar 

  77. Ponta, H., Sherman, L., & Herrlich, P. A. (2003). CD44: From adhesion molecules to signaling regulators. Nature Reviews, Molecular Cell Biology, 4(1), 33–45.

    CAS  Google Scholar 

  78. Takahashi, K., Takahashi, F., Hirama, M., Tanabe, K. K., & Fukuchi, Y. (2003). Restoration of CD44S in non-small cell lung cancer cells enhanced their susceptibility to the macrophage cytotoxicity. Lung Cancer, 41(2), 145–153.

    PubMed  Google Scholar 

  79. Asosingh, K., Gunthert, U., Bakkus, M. H., De Raeve, H., Goes, E., Van Riet, I., et al. (2000). In vivo induction of insulin-like growth factor-I receptor and CD44v6 confers homing and adhesion to murine multiple myeloma cells. Cancer Research, 60(11), 3096–3104.

    PubMed  CAS  Google Scholar 

  80. Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.

    PubMed  CAS  Google Scholar 

  81. Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zoller, M., Heider, K. H., Ponta, H., et al. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: Each one individually suffices to confer metastatic behavior. Cancer Research, 53(6), 1262–1268.

    PubMed  CAS  Google Scholar 

  82. Gao, C., Guo, H., Downey, L., Marroquin, C., Wei, J., & Kuo, P. C. (2003). Osteopontin-dependent CD44v6 expression and cell adhesion in HepG2 cells. Carcinogenesis, 24(12), 1871–1878.

    PubMed  CAS  Google Scholar 

  83. Lin, Y. H., Huang, C. J., Chao, J. R., Chen, S. T., Lee, S. F., Yen, J. J., et al. (2000). Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte–macrophage colony-stimulating factor. Molecular and Cellular Biology, 20(8), 2734–2742.

    PubMed  CAS  Google Scholar 

  84. Zohar, R., Cheifetz, S., McCulloch, C. A., & Sodek, J. (1998). Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. European Journal of Oral Sciences, 106(1), 401–407.

    PubMed  CAS  Google Scholar 

  85. Zohar, R., Suzuki, N., Suzuki, K., Arora, P., Glogauer, M., McCulloch, C. A., et al. (2000). Intracellular osteopontin is an integral component of the CD44–ERM complex involved in cell migration. Journal of Cellular Physiology, 184(1), 118–130.

    PubMed  CAS  Google Scholar 

  86. Sodek, J., Ganss, B., & McKee, M. D. (2000). Osteopontin. Critical Reviews in Oral Biology and Medicine, 11(3), 279–303.

    PubMed  CAS  Google Scholar 

  87. Brown, L. F., Papadopoulos-Sergiou, A., Berse, B., Manseau, E. J., Tognazzi, K., Perruzzi, C. A., et al. (1994). Osteopontin expression and distribution in human carcinomas. American Journal of Pathology, 145(3), 610–623.

    PubMed  CAS  Google Scholar 

  88. Bellahcene, A., & Castronovo, V. (1995). Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. American Journal of Pathology, 146(1), 95–100.

    PubMed  CAS  Google Scholar 

  89. Hirota, S., Ito, A., Nagoshi, J., Takeda, M., Kurata, A., Takatsuka, Y., et al. (1995). Expression of bone matrix protein messenger ribonucleic acids in human breast cancers. Possible involvement of osteopontin in development of calcifying foci. Laboratory Investigation, 72(1), 64–69.

    PubMed  CAS  Google Scholar 

  90. Singhal, H., Bautista, D. S., Tonkin, K. S., O, , Malley, F. P., Tuck, A. B., Chambers, A. F., et al. (1997). Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clinical Cancer Research, 3(4), 605–611.

    PubMed  CAS  Google Scholar 

  91. Tuck, A. B., O, , Malley, F. P., Singhal, H., Harris, J. F., Tonkin, K. S., Kerkvliet, N., et al. (1998). Osteopontin expression in a group of lymph node negative breast cancer patients. International Journal of Cancer, 79(5), 502–508.

    CAS  Google Scholar 

  92. Casson, A. G., Wilson, S. M., McCart, J. A., O’Malley, F. P., Ozcelik, H., Tsao, M. S., et al. (1997). Ras mutation and expression of the ras-regulated genes osteopontin and cathepsin L in human esophageal cancer. International Journal of Cancer, 72(5), 739–745.

    CAS  Google Scholar 

  93. Gotoh, M., Sakamoto, M., Kanetaka, K., Chuuma, M., & Hirohashi, S. (2002). Overexpression of osteopontin in hepatocellular carcinoma. Pathology International, 52(1), 19–24.

    PubMed  CAS  Google Scholar 

  94. Fedarko, N. S., Jain, A., Karadag, A., Van Eman, M. R., & Fisher, L. W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clinical Cancer Research, 7(12), 4060–4066.

    PubMed  CAS  Google Scholar 

  95. Tuck, A. B., O, , Malley, F. P., Singhal, H., Tonkin, K. S., Harris, J. F., Bautista, D., et al. (1997). Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Archives of Pathology and Laboratory Medicine, 121(6), 578–584.

    PubMed  CAS  Google Scholar 

  96. Tuck, A. B., Arsenault, D. M., O, , Malley, F. P., Hota, C., Ling, M. C., Wilson, S. M., et al. (1999). Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene, 18(29), 4237–4246.

    PubMed  CAS  Google Scholar 

  97. Ue, T., Yokozaki, H., Kitadai, Y., Yamamoto, S., Yasui, W., Ishikawa, T., et al. (1998). Co-expression of osteopontin and CD44v9 in gastric cancer. International Journal of Cancer, 79(2), 127–132.

    CAS  Google Scholar 

  98. Shijubo, N., Uede, T., Kon, S., Maeda, M., Segawa, T., Imada, A., et al. (1999). Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. American Journal of Respiratory and Critical Care Medicine, 160(4), 1269–1273.

    PubMed  CAS  Google Scholar 

  99. Chambers, A. F., Wilson, S. M., Kerkvliet, N., O, , Malley, F. P., Harris, J. F., & Casson, A. G. (1996). Osteopontin expression in lung cancer. Lung Cancer, 15(3), 311–323.

    PubMed  CAS  Google Scholar 

  100. Thalmann, G. N., Sikes, R. A., Devoll, R. E., Kiefer, J. A., Markwalder, R., Klima, I., et al. (1999). Osteopontin: Possible role in prostate cancer progression. Clinical Cancer Research, 5(8), 2271–2277.

    PubMed  CAS  Google Scholar 

  101. Pan, H. W., Ou, Y. H., Peng, S. Y., Liu, S. H., Lai, P. L., Lee, P. H., et al. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer, 98(1), 119–127.

    PubMed  CAS  Google Scholar 

  102. Agrawal, D., Chen, T., Irby, R., Quackenbush, J., Chambers, A. F., Szabo, M., et al. (2002). Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. Journal of the National Cancer Institute, 94(7), 513–521.

    PubMed  CAS  Google Scholar 

  103. Yeatman, T. J., & Chambers, A. F. (2003). Osteopontin and colon cancer progression. Clinical & Experimental Metastasis, 20(1), 85–90.

    CAS  Google Scholar 

  104. Rudland, P. S., Platt-Higgins, A., El-Tanani, M., De Silva Rudland, S., Barraclough, R., Winstanley, J. H., et al. (2002). Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Research, 62(12), 3417–3427.

    PubMed  CAS  Google Scholar 

  105. Wu, C. Y., Wu, M. S., Chiang, E. P., Wu, C. C., Chen, Y. J., Chen, C. J., et al. (2007). Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut, 56(6), 782–789.

    PubMed  CAS  Google Scholar 

  106. Chang, Y. S., Kim, H. J., Chang, J., Ahn, C. M., Kim, S. K., & Kim, S. K. (2007). Elevated circulating level of osteopontin is associated with advanced disease state of non-small cell lung cancer. Lung Cancer, 57(3), 373–380.

    PubMed  Google Scholar 

  107. Bramwell, V. H., Doig, G. S., Tuck, A. B., Wilson, S. M., Tonkin, K. S., et al. (2006). Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clinical Cancer Research, 12(11), 3337–3343.

    PubMed  CAS  Google Scholar 

  108. Tuck, A. B., Elliott, B. E., Hota, C., Tremblay, E., & Chambers, A. F. (2000). Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). Journal of Cellular Biochemistry, 78(3), 465–475.

    PubMed  CAS  Google Scholar 

  109. Yoneda, T., Williams, P. J., & Niewolna, M. (1998). Promotion of angiogenesis and enhancement of breast cancer metastasis to bone. Bone, 23(5), 201–202.

    Google Scholar 

  110. Oates, A. J., Barraclough, R., & Rudland, P. S. (1996). The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene, 13(1), 97–104.

    PubMed  CAS  Google Scholar 

  111. Chen, H., Ke, Y., Oates, A. J., Barraclough, R., & Rudland, P. S. (1997). Isolation of and effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene, 14(13), 1581–1588.

    PubMed  CAS  Google Scholar 

  112. Takahashi, F., Akutagawa, S., Fukumoto, H., Tsukiyama, S., Ohe, Y., Takahashi, K., et al. (2002). Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. International Journal of Cancer, 98(5), 707–712.

    CAS  Google Scholar 

  113. Crawford, H. C., Matrisian, L. M., & Liaw, L. (1998). Distinct roles of osteopontin in host defense activity and tumor survival during squamous cell carcinoma progression in vivo. Cancer Research, 58(22), 5206–5215.

    PubMed  CAS  Google Scholar 

  114. Wu, Y., Denhardt, D. T., & Rittling, S. R. (2000). Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. British Journal of Cancer, 83(2), 156–163.

    PubMed  CAS  Google Scholar 

  115. Nemoto, H., Rittling, S. R., Yoshitake, H., Furuya, K., Amagasa, T., Tsuji, K., et al. (2001). Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. Journal of Bone and Mineral Research, 16(4), 652–659.

    PubMed  CAS  Google Scholar 

  116. Mukhopadhyay, R., & Price, J. E. (1999). Stable expression of Antisense osteopontin inhibits the growth of human breast cancer cells. Proceedings of the American Association for Cancer Research, 40(2), 448–449.

    Google Scholar 

  117. Adwan, H., Bauerle, T. J., & Berger, M. R. (2003). Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Therapy, 11(2), 109–120.

    Google Scholar 

  118. Gardner, H. A., Berse, B., & Senger, D. R. (1994). Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene, 9(8), 2321–2326.

    PubMed  CAS  Google Scholar 

  119. Behrend, E. I., Craig, A. M., Wilson, S. M., Denhardt, D. T., & Chambers, A. F. (1994). Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Research, 54(3), 832–837.

    PubMed  CAS  Google Scholar 

  120. Tanabe, K. K., Ellis, L. M., & Saya, H. (1993). Expression of CD44R1 adhesion molecule in colon carcinomas and metastases. Lancet, 341(8847), 725–726.

    PubMed  CAS  Google Scholar 

  121. Stamenkovic, I., Aruffo, A., Amiot, M., & Seed, B. (1991). The hematopoietic and epithelial forms of CD44 are distinct polypeptides with different adhesion potentials for hyaluronate-bearing cells. EMBO Journal, 10(2), 343–348.

    PubMed  CAS  Google Scholar 

  122. Matsumura, Y., & Tarin, D. (1992). Significance of CD44 gene products for cancer diagnosis and disease evaluation. Lancet, 340(8827), 1053–1058.

    PubMed  CAS  Google Scholar 

  123. Tanabe, K. K., Stamenkovic, I., Cutler, M., & Takahashi, K. (1995). Restoration of CD44H expression in colon carcinomas reduces tumorigenicity. Annals of Surgery, 222(4), 493–501.

    Article  PubMed  CAS  Google Scholar 

  124. Takahashi, K., Stamenkovic, I., Cutler, M., Saya, H., & Tanabe, K. K. (1995). CD44 hyaluronate binding influences growth kinetics and tumorigenicity of human colon carcinomas. Oncogene, 11(11), 2223–2232.

    PubMed  CAS  Google Scholar 

  125. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411(6835), 342–348.

    PubMed  CAS  Google Scholar 

  126. Lin, Y. H., & Yang-Yen, H. F. (2001). The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Journal of Biological Chemistry, 276(49), 46024–46030.

    PubMed  CAS  Google Scholar 

  127. Hruska, K. A., Rolnick, F., Huskey, M., Alvarez, U., & Cheresh, D. (1995). Engagement of the osteoclast integrin alpha v beta 3 by osteopontin stimulates phosphatidylinositol 3-hydroxyl kinase activity. Endocrinology, 136(7), 2984–2992.

    PubMed  CAS  Google Scholar 

  128. Chellaiah, M., & Hruska, K. (1996). Osteopontin stimulates gelsolin-associated phosphoinositide levels and phosphatidylinositol triphosphate-hydroxyl kinase. Molecular Biology of the Cell, 7(5), 743–753.

    PubMed  CAS  Google Scholar 

  129. Urquidi, V., Sloan, D., Kawai, K., Agarwal, D., Woodman, A. C., Tarin, D., et al. (2002). Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clinical Cancer Research, 8(1), 61–74.

    PubMed  CAS  Google Scholar 

  130. Aznavoorian, S., Murphy, A. N., Stetler-Stevenson, W. G., & Liotta, L. A. (1993). Molecular aspects of tumor cell invasion and metastasis. Cancer, 71(4), 1368–1383.

    PubMed  CAS  Google Scholar 

  131. Murphy, G., & Gavrilovic, J. (1999). Proteolysis and cell migration: creating a path? Current Opinion in Cell Biology, 11(5), 614–621.

    PubMed  CAS  Google Scholar 

  132. Philip, S., Bulbule, A., & Kundu, G. C. (2001). Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. Journal of Biological Chemistry, 276(48), 44926–44935.

    PubMed  CAS  Google Scholar 

  133. Tuck, A. B., Hota, C., & Chambers, A. F. (2001). Osteopontin (OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent. Breast Cancer Research and Treatment, 70(3), 197–204.

    PubMed  CAS  Google Scholar 

  134. Andreasen, P. A., Kjoller, L., Christensen, L., & Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. International Journal of Cancer, 72(1), 1–22.

    CAS  Google Scholar 

  135. Fisher, J. L., Field, C. L., Zhou, H., Harris, T. L., Henderson, M. A., & Choong, P. F. (2000). Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases—A comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Research and Treatment, 61(1), 1–12.

    PubMed  CAS  Google Scholar 

  136. Philip, S., & Kundu, G. C. (2003). Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha /IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. Journal of Biological Chemistry, 278(16), 14487–14497.

    PubMed  CAS  Google Scholar 

  137. Das, R., Mahabeleshwar, G. H., & Kundu, G. C. (2003). Osteopontin stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. Journal of Biological Chemistry, 278(31), 28593–28606.

    PubMed  CAS  Google Scholar 

  138. Jain, S., Chakraborty, G., & Kundu, G. C. (2006). The crucial role of cyclooxygenase-2 in osteopontin-induced protein kinase C alpha/c-Src/IkappaB kinase alpha/beta-dependent prostate tumor progression and angiogenesis. Cancer Research, 66(13), 6638–6648.

    PubMed  CAS  Google Scholar 

  139. Rangswami, H., Bulbule, A., & Kundu, G. C. (2004). Nuclear factor-inducing kinase plays a crucial role in osteopontin-induced MAPK/IkappaBalpha kinase-dependent nuclear factor kappaB-mediated promatrix metalloproteinase-9 activation. Journal of Biological Chemistry, 279(37), 38921–38935.

    Google Scholar 

  140. Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.

    PubMed  CAS  Google Scholar 

  141. Mi, Z., Oliver, T., Guo, H., Gao, C., & Kuo, P. C. (2007). Thrombin-cleaved COOH(–) terminal osteopontin peptide binds with cyclophilin C to CD147 in murine breast cancer cells. Cancer Research, 67(9), 4088–4097.

    PubMed  CAS  Google Scholar 

  142. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3(5), 362–374.

    PubMed  CAS  Google Scholar 

  143. Tuck, A. B., Hota, C., Wilson, S. M., & Chambers, A. F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene, 22(8), 1198–1205.

    PubMed  CAS  Google Scholar 

  144. Hayashi, C., Rittling, S., Hayata, T., Amagasa, T., Denhardt, D., Ezura, Y., et al. (2007). Serum osteopontin, an enhancer of tumor metastasis to bone, promotes B16 melanoma cell migration. Journal of Cellular Biochemistry, 101(4), 979–986.

    PubMed  CAS  Google Scholar 

  145. Denhardt, D. T., & Chambers, A. F. (1994). Overcoming obstacles to metastasis–defenses against host defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells. Journal of Cellular Biochemistry, 56(1), 48–51.

    PubMed  CAS  Google Scholar 

  146. Gao, C., Guo, H., Wei, J., & Kuo, P. C. (2003). Osteopontin inhibits expression of cytochrome c oxidase in RAW 264.7 murine macrophages. Biochemical and Biophysical Research Communications, 309(1), 120–125.

    PubMed  CAS  Google Scholar 

  147. Guo, H., Cai, C. Q., Schroeder, R. A., & Kuo, P. C. (2001). Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. Journal of Immunology, 166(2), 1079–1086.

    CAS  Google Scholar 

  148. Gao, C., Guo, H., Mi, Z., Wai, P. Y., & Kuo, P. C. (2005). Transcriptional regulatory functions of heterogeneous nuclear ribonucleoprotein-U and -A/B in endotoxin-mediated macrophage expression of osteopontin. Journal of Immunology, 175(1), 523–530.

    CAS  Google Scholar 

  149. Wai, P. Y., Guo, L., Gao, C., Mi, Z., Guo, H., & Kuo, P. C. (2006). Osteopontin inhibits macrophage nitric oxide synthesis to enhance tumor proliferation. Surgery, 40(2), 132–140.

    Google Scholar 

  150. Scott, J. A., Weir, M. L., Wilson, S. M., Xuan, J. W., Chambers, A. F., & McCormack, D. G. (1998). Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. American Journal of Physiology, 275(6), H2258–H2265.

    PubMed  CAS  Google Scholar 

  151. Nagasaki, T., Ishimura, E., Koyama, H., Shioi, A., Jono, S., Inaba, M., et al. (1999). Alphav integrin regulates TNF-alpha-induced nitric oxide synthesis in rat mesangial cells—Possible role of osteopontin. Nephrology Dialysis Transplantation, 14(8), 1861–1866.

    CAS  Google Scholar 

  152. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6), 15–18.

    PubMed  CAS  Google Scholar 

  153. Hanrahan, V., Currie, M. J., Gunningham, S. P., Morrin, H. R., Scott, P. A., Robinson, B. A., et al. (2003). The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma–carcinoma sequence during colorectal cancer progression. Journal of Pathology, 200(2), 183–194.

    PubMed  CAS  Google Scholar 

  154. Nakamura, Y., Yasuoka, H., Tsujimoto, M., Yang, Q., Imabun, S., Nakahara, M., et al. (2003). Prognostic significance of vascular endothelial growth factor D in breast carcinoma with long-term follow-up. Clinical Cancer Research, 9(2), 716–721.

    PubMed  CAS  Google Scholar 

  155. Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., et al. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Letters, 198(1), 107–117.

    PubMed  CAS  Google Scholar 

  156. Leali, D., Dell, , Era, P., Stabile, H., Sennino, B., Chambers, A. F., Naldini, A., et al. (2003). Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. Journal of Immunology, 171(2), 1085–1093.

    CAS  Google Scholar 

  157. Khan, S. A., Lopez-Chua, C. A., Zhang, J., Fisher, L. W., Sorensen, E. S., & Denhardt, D. T. (2002). Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. Journal of Cellular Biochemistry, 85(4), 728–736.

    PubMed  CAS  Google Scholar 

  158. Malyankar, U. M., Hanson, R., Schwartz, S. M., Ridall, A. L., & Giachelli, C. M. (1999). Upstream stimulatory factor 1 regulates osteopontin expression in smooth muscle cells. Experimental Cell Research, 250(2), 535–547.

    PubMed  CAS  Google Scholar 

  159. Zhang, Q., Wrana, J. L., & Sodek, J. (1992). Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Identification of positive and negative regulatory elements and a ‘silent’ second promoter. European Journal of Biochemistry, 207(2), 649–659.

    PubMed  CAS  Google Scholar 

  160. Eferl, R., & Wagner, E. F. (2003). AP-1: A double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3(11), 859–868.

    PubMed  CAS  Google Scholar 

  161. Deng, T., & Karin, M. (1993). JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes & Development, 7(3), 479–490.

    CAS  Google Scholar 

  162. Chiu, R., Angel, P., & Karin, M. (1989). Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell, 59(6), 979–986.

    PubMed  CAS  Google Scholar 

  163. Wang, Z. Q., Grigoriadis, A. E., Mohle-Steinlein, U., & Wagner, E. F. (1991). A novel target cell for c-fos-induced oncogenesis: Development of chondrogenic tumours in embryonic stem cell chimeras. EMBO Journal, 10(9), 2437–2450.

    PubMed  CAS  Google Scholar 

  164. Grigoriadis, A. E., Schellander, K., Wang, Z. Q., & Wagner, E. F. (1993). Osteoblasts are target cells for transformation in c-fos transgenic mice. Journal of Cell Biology, 122(3), 685–701.

    PubMed  CAS  Google Scholar 

  165. Young, M. R., Li, J. J., Rincon, M., Flavell, R. A., Sathyanarayana, B. K., Hunziker, R., et al. (1999). Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9827–9832.

    PubMed  CAS  Google Scholar 

  166. Jochum, W., David, J. P., Elliott, C., Wutz, A., Plenk Jr, H., Matsuo, K., et al. (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nature Medicine, 6(9), 980–984.

    PubMed  CAS  Google Scholar 

  167. Renault, M. A., Jalvy, S., Belloc, I., Pasquet, S., Sena, S., Olive, M., et al. (2003). AP-1 is involved in UTP-induced osteopontin expression in arterial smooth muscle cells. Circulation Research, 93(7), 674–681.

    PubMed  CAS  Google Scholar 

  168. Kim, H. J., Lee, M. H., Kim, H. J., Shin, H. I., Choi, J. Y., & Ryoo, H. M. (2002). Okadaic acid stimulates osteopontin expression through de novo induction of AP-1. Journal of Cellular Biochemistry, 87(1), 93–102.

    PubMed  CAS  Google Scholar 

  169. Mi, Z., Guo, H., Wai, P. Y., Gao, C., & Kuo, P. C. (2006). Integrin-linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis, 27(6), 1134–1145.

    PubMed  CAS  Google Scholar 

  170. Wang, D., Yamamoto, S., Hijiya, N., Benveniste, E. N., & Gladson, C. L. (2000). Transcriptional regulation of the human osteopontin promoter: Functional analysis and DNA–protein interactions. Oncogene, 19(50), 5801–5809.

    PubMed  CAS  Google Scholar 

  171. Kiermaier, A., Gawn, J. M., Desbarats, L., Saffrich, R., Ansorge, W., Farrell, P. J., et al. (1999). DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene, 18(51), 7200–7211.

    PubMed  CAS  Google Scholar 

  172. Sirito, M., Lin, Q., Deng, J. M., Behringer, R. R., & Sawadogo, M. (1998). Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3758–3763.

    PubMed  CAS  Google Scholar 

  173. Atchley, W. R., & Fitch, W. M. (1997). A natural classification of the basic helix–loop–helix class of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5172–5176.

    PubMed  CAS  Google Scholar 

  174. Jaiswal, A. S., & Narayan, S. (2001). Upstream stimulating factor-1 (USF1) and USF2 bind to and activate the promoter of the adenomatous polyposis coli (APC) tumor suppressor gene. Journal of Cellular Biochemistry, 81(2), 262–277.

    PubMed  CAS  Google Scholar 

  175. Reisman, D., & Rotter, V. (1993). The helix–loop–helix containing transcription factor USF binds to and transactivates the promoter of the p53 tumor suppressor gene. Nucleic Acids Research, 21(2), 345–350.

    PubMed  CAS  Google Scholar 

  176. Bidder, M., Shao, J. S., Charlton-Kachigian, N., Loewy, A. P., Semenkovich, C. F., & Towler, D. A. (2002). Osteopontin transcription in aortic vascular smooth muscle cells is controlled by glucose-regulated upstream stimulatory factor and activator protein-1 activities. Journal of Biological Chemistry, 277(46), 44485–44496.

    PubMed  CAS  Google Scholar 

  177. Tezuka, K., Denhardt, D. T., Rodan, G. A., & Harada, S. (1996). Stimulation of mouse osteopontin promoter by v-Src is mediated by a CCAAT box-binding factor. Journal of Biological Chemistry, 271(37), 22713–22717.

    PubMed  CAS  Google Scholar 

  178. Blobel, G. A., & Hanafusa, H. (1991). The v-src inducible gene 9E3/pCEF4 is regulated by both its promoter upstream sequence and its 3′ untranslated region. Proceedings of the National Academy of Sciences of the United States of America, 88(4), 1162–1166.

    PubMed  CAS  Google Scholar 

  179. Schonthal, A., Herrlich, P., Rahmsdorf, H. J., & Ponta, H. (1988). Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell, 54(3), 325–334.

    PubMed  CAS  Google Scholar 

  180. Birchenall-Roberts, M. C., Ruscetti, F. W., Kasper, J., Lee, H. D., Friedman, R., Geiser, A., et al. (1990). Molecular and Cellular Biology, 10(9), 4978–4983.

    PubMed  CAS  Google Scholar 

  181. Fujii, M., Shalloway, D., & Verma, I. M. (1989). Gene regulation by tyrosine kinases: Src protein activates various promoters, including c-fos. Molecular and Cellular Biology, 9(6), 2493–2499.

    PubMed  CAS  Google Scholar 

  182. Apel, I., Yu, C. L., Wang, T., Dobry, C., Van Antwerp, M. E., Jove, R., et al. (1992). Regulation of the junB gene by v-src. Molecular and Cellular Biology, 12(8), 3356–3364.

    PubMed  CAS  Google Scholar 

  183. Sato, H., Kita, M., & Seiki, M. (1993). v-Src activates the expression of 92-kDa type IV collagenase gene through the AP-1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. Journal of Biological Chemistry, 268(31), 23460–23468.

    PubMed  CAS  Google Scholar 

  184. Lund, A. H., & van Lohuizen, M. (2002). RUNX: a trilogy of cancer genes. Cancer Cell, 1(3), 213–215.

    PubMed  CAS  Google Scholar 

  185. Coffman, J. A. (2003). Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biology International, 27(4), 315–324.

    PubMed  CAS  Google Scholar 

  186. Ito, Y., & Miyazono, K. (2003). RUNX transcription factors as key targets of TGF-beta superfamily signaling. Current Opinion in Genetics & Development, 13(1), 43–47.

    CAS  Google Scholar 

  187. Li, Q. L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X. Z., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 109(1), 113–124.

    PubMed  CAS  Google Scholar 

  188. Speck, N. A., & Gilliland, D. G. (2002). Core-binding factors in haematopoiesis and leukaemia. Nature Reviews. Cancer, 2(7), 502–513.

    PubMed  CAS  Google Scholar 

  189. Inman, C. K., & Shore, P. (2003). The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. Journal of Biological Chemistry, 278(49), 48684–48689.

    PubMed  CAS  Google Scholar 

  190. Otto, F., Thornell, A. P., Crompton, T., Denzel, A., Gilmour, K. C., Rosewell, I. R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5), 765–771.

    PubMed  CAS  Google Scholar 

  191. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5), 755–764.

    PubMed  CAS  Google Scholar 

  192. Sato, M., Morii, E., Komori, T., Kawahata, H., Sugimoto, M., Terai, K., et al. (1998). Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene, 17(12), 1517–1525.

    PubMed  CAS  Google Scholar 

  193. Barnes, G. L., Javed, A., Waller, S. M., Kamal, M. H., Hebert, K. E., Hassan, M. Q., et al. (2003). Cancer Research, 63(10), 2631–2637.

    PubMed  CAS  Google Scholar 

  194. Wai, P. Y., Mi, Z., Gao, C., Guo, H., Marroquin, C., & Kuo, P. C. (2006). Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. Journal of Biological Chemistry, 281(28), 18973–18982.

    PubMed  CAS  Google Scholar 

  195. Lee, K. S., Kim, H. J., Li, Q. L., Chi, X. Z., Ueta, C., Komori, T., et al. (2000). Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Molecular and Cellular Biology, 20(23), 8783–92.

    PubMed  CAS  Google Scholar 

  196. Hanai, J., Chen, L. F., Kanno, T., Ohtani-Fujita, N., Kim, W. Y., Guo, W. H., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. Journal of Biological Chemistry, 274(44), 31577–31582.

    PubMed  CAS  Google Scholar 

  197. Shi, X., Bai, S., Li, L., & Cao, X. (2001). Hoxa-9 represses transforming growth factor-beta-induced osteopontin gene transcription. Journal of Biological Chemistry, 276(1), 850–855.

    PubMed  CAS  Google Scholar 

  198. Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis.Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8621–8623.

    PubMed  CAS  Google Scholar 

  199. Medrano, E. E. (2003). Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene, 22(20), 3123–3129.

    PubMed  CAS  Google Scholar 

  200. Bello-DeOcampo, D., & Tindall, D. J. (2003). TGF-betal/Smad signaling in prostate cancer. Current Drugs Targets, 4(3), 197–207.

    CAS  Google Scholar 

  201. Guise, T. A., & Chirgwin, J. M. (2003). Transforming growth factor-beta in osteolytic breast cancer bone metastases. Clinica Ortopedica, 415(Suppl), S32–S38.

    Google Scholar 

  202. Kim, S. J., & Letterio, J. (2003). Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia, 17(9), 1731–1737.

    PubMed  CAS  Google Scholar 

  203. Noda, M., Yoon, K., Prince, C. W., Butler, W. T., & Rodan, G. A. (1988). Transcriptional regulation of osteopontin production in rat osteosarcoma cells by type beta transforming growth factor. Journal of Biological Chemistry, 263(27), 13916–13921.

    PubMed  CAS  Google Scholar 

  204. Wrana, J. L., Kubota, T., Zhang, Q., Overall, C. M., Aubin, J. E., Butler, W. T., et al. (1991). Regulation of transformation-sensitive secreted phosphoprotein (SPPI/osteopontin) expression by transforming growth factor-beta. Comparisons with expression of SPARC (secreted acidic cysteine-rich protein). Biochemical Journal, 273(3), 523–531.

    PubMed  CAS  Google Scholar 

  205. Cheifetz, S., Li, I. W., McCulloch, C. A., Sampath, K., & Sodek, J. (1996). Influence of osteogenic protein-1 (OP-1;BMP-7) and transforming growth factor-beta 1 on bone formation in vitro. Connective Tissue Research, 35(1–4), 71–78.

    PubMed  CAS  Google Scholar 

  206. Hullinger, T. G., Pa, N. Q., Viswanatha, N. H. L., & Somerman, M. J. (2001). TGFbeta and BMP-2 activation of the OPN promoter: Roles of smad- and hox-binding elements. Experimental Cell Research, 262(1), 69–74.

    PubMed  CAS  Google Scholar 

  207. Cui, J., Zhou, X., Liu, Y., Tang, Z., & Romeih, M. (2003). Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta-catenin, T-cell factor-4 and glycogen synthase kinase 3-beta genes. Journal of Gastroenterology and Hepatology, 18(3), 280–287.

    PubMed  CAS  Google Scholar 

  208. Bright-Thomas, R. M., & Hargest, R. (2003). APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. European Journal of Surgical Oncology, 29(2), 107–117.

    PubMed  CAS  Google Scholar 

  209. El-Tanani, M., Barraclough, R., Wilkinson, M. C., & Rudland, P. S. (2001). Metastasis-inducing dna regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4. Cancer Research, 61(14), 5619–5629.

    PubMed  CAS  Google Scholar 

  210. Denhardt, D. T., Mistretta, D., Chambers, A. F., Krishna, S., Porter, J. F., Raghuram, S., et al. (2003). Transcriptional regulation of osteopontin and the metastatic phenotype: Evidence for a Ras-activated enhancer in the human OPN promoter. Clinical & Experimental Metastasis, 20(1), 77–84.

    CAS  Google Scholar 

  211. Bos, J. L. (1989). Ras oncogenes in human cancer: A review. Cancer Research, 49(17), 4682–4689.

    PubMed  CAS  Google Scholar 

  212. Chambers, A. F., Behrend, E. I., Wilson, S. M., & Denhardt, D. T. (1992). Induction of expression of osteopontin (OPN; secreted phosphoprotein) in metastatic, ras-transformed NIH 3T3 cells. Anticancer Research, 12(1), 43–47.

    PubMed  CAS  Google Scholar 

  213. Guo, X., Zhang, Y. P., Mitchell, D. A., Denhardt, D. T., & Chambers, A. F. (1995). Identification of a ras-activated enhancer in the mouse osteopontin promoter and its interaction with a putative ETS-related transcription factor whose activity correlates with the metastatic potential of the cell. Molecular and Cellular Biology, 15(1), 476–487.

    PubMed  CAS  Google Scholar 

  214. Morimoto, I., Sasaki, Y., Ishida, S., Imai, K., & Tokino, T. (2002). Identification of the osteopontin gene as a direct target of TP53. Genes Chromosomes Cancer, 33(3), 270–278.

    PubMed  CAS  Google Scholar 

  215. Safe, S., & Abdelrahim, M. (2005). Sp transcription factor family and its role in cancer. European Journal of Cancer, 41(16), 2438–24348.

    PubMed  CAS  Google Scholar 

  216. Takami, Y., Russell, M. B., Gao, C., Mi, Z., Guo, H., Mantyh, C. R., et al. (2007). Sp1 regulates osteopontin expression in SW480 human colon adenocarcinoma cells. Surgery, 142(2), 163–169.

    PubMed  Google Scholar 

  217. el-Deiry, W. S. (1998). Seminars in Cancer Biology, 8(5), 345–357.

    PubMed  CAS  Google Scholar 

  218. Tokino, T., & Nakamura, Y. (2000). The role of p53-target genes in human cancer. Critical Reviews in Oncology/Hematology, 33(1), 1–6.

    PubMed  CAS  Google Scholar 

  219. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.

    PubMed  CAS  Google Scholar 

  220. Zhu, K., Wang, J., Zhu, J., Jiang, J., Shou, J., & Chen, X. (1999). p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene, 18(54), 7740–7747.

    PubMed  CAS  Google Scholar 

  221. Craig, A. M., Bowde, N. G. T., Chambers, A. F., Spearman, M. A., Greenberg, A. H., Wright, J. A., et al. (1990). Secreted phosphoprotein mRNA is induced during multi-stage carcinogenesis in mouse skin and correlates with the metastatic potential of murine fibroblasts. International Journal of Cancer, 46(1), 133–137.

    CAS  Google Scholar 

  222. Chang, P. L., Tucker, M. A., Hicks, P. H., & Prince, C. W. (2002). Novel protein kinase C isoforms and mitogen-activated kinase kinase mediate phorbol ester-induced osteopontin expression. International Journal of Biochemistry & Cell Biology, 34(9), 1142–1151.

    CAS  Google Scholar 

  223. Manji, S. S., Ng, K. W., Martin, T. J., & Zhou, H. (1998). Transcriptional and posttranscriptional regulation of osteopontin gene expression in preosteoblasts by retinoic acid. Journal of Cellular Physiology, 176(1), 1–9.

    PubMed  CAS  Google Scholar 

  224. Asaumi, S., Takemoto, M., Yokote, K., Ridall, A. L., Butler, W. T., Fujimoto, M., et al. (2003). Identification and characterization of high glucose and glucosamine responsive element in the rat osteopontin promoter. Journal of Diabetes and Its Complications, 17(1), 34–38.

    PubMed  Google Scholar 

  225. Noda, M., Vogel, R. L., Craig, A. M., Prahl, J., DeLuca, H. F., & Denhardt, D. T. (1990). Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9995–9999.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded by National Institutes of Health grants R01 GM65113, R01 AI44629, and R21DK070642 to PCK and Society of University Surgeons grant to P.Y.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C. Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wai, P.Y., Kuo, P.C. Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27, 103–118 (2008). https://doi.org/10.1007/s10555-007-9104-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9104-9

Keywords

Navigation