Skip to main content

Advertisement

Log in

Metastasis signatures: genes regulating tumor–microenvironment interactions predict metastatic behavior

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The possibility of predicting clinical outcome of cancer patients through the analysis of gene expression profiles in the primary tumor is a kind of ideological revolution as the multistep carcinogenesis model postulates that the proportion of cells within the primary tumor that actually acquire metastasis driving mutation(s) is small; too small to leave its imprint on the gene expression profile. The data collected to date have brought a new paradigm to reality in the metastasis field: metastasis must at least in part rely on mutations and/or gene regulation events present in the majority of cells which constitute the primary tumor mass. By analyses of differential expression of primary tumors versus metastases or by functional analyses of putative metastasis genes in experimental metastasis, many metastasis-associated gene expression events have been identified that correlate with the development of metastases. Among genes “favoring” metastasis, we find many molecules that are expressed not by the tumor cell itself but by the cells of the microenvironment, as well as genes over-expressed in the primary tumor that have a principle role in mediating tumor–host interactions. Here we review these concepts and advance hypotheses on how gene expression of the primary tumor and the microenvironment can favor the spread of the metastasis seeds and how this knowledge can provide tools to secondary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van ‘t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415, 530–536.

    Article  PubMed  Google Scholar 

  2. Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418, 823.

    Article  PubMed  CAS  Google Scholar 

  3. Poste, G., & Fidler, I. J. (1980). The pathogenesis of cancer metastasis. Nature, 283, 139–146.

    Article  PubMed  CAS  Google Scholar 

  4. Ramaswamy, S., Ross, K. N., Lander, E. S., & Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nature Genetics, 33, 49–54.

    Article  PubMed  CAS  Google Scholar 

  5. Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197, 893–895.

    Article  PubMed  CAS  Google Scholar 

  6. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.

    Article  PubMed  CAS  Google Scholar 

  7. Fearon, E. R., Hamilton, S. R., & Vogelstein, B. (1987). Clonal analysis of human colorectal tumors. Science, 238, 193–197.

    Article  PubMed  CAS  Google Scholar 

  8. Vogelstein, B., Fearon, E. R., Kern, S. E., Hamilton, S. R., Preisinger, A. C., Nakamura, Y., & White, R. (1989). Allelotype of colorectal carcinomas. Science, 244, 207–211.

    Article  PubMed  CAS  Google Scholar 

  9. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.

    Article  PubMed  CAS  Google Scholar 

  10. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.

    Article  PubMed  CAS  Google Scholar 

  11. Minn, A. J., Gupta, G. P., Padua, D., Bos, P., Nguyen, D. X., Nuyten, D., et al. (2007). Lung metastasis genes couple breast tumor size and metastatic spread. Proceedings of the National Academy of Sciences of the United States of America, 104, 6740–6745.

    Article  PubMed  CAS  Google Scholar 

  12. Gupta, G. P., Minn, A. J., Kang, Y., Siegel, P. M., Serganova, I., Cordon-Cardo, C., et al. (2005). Identifying site-specific metastasis genes and functions. Cold Spring Harbor Symposia on Quantitative Biology, 70, 149–158.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365, 671–679.

    PubMed  CAS  Google Scholar 

  14. Tan, D. S., Agarwal, R., & Kaye, S. B. (2006). Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncology, 7, 925–934.

    Article  PubMed  Google Scholar 

  15. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  16. Bertucci, F., Finetti, P., Rougemont, J., Charafe-Jauffret, E., Cervera, N., Tarpin, C., et al. (2005). Gene expression profiling identifies molecular subtypes of inflammatory breast cancer. Cancer Research, 65, 2170–2178.

    Article  PubMed  CAS  Google Scholar 

  17. Chang, H. Y., Nuyten, D. S., Sneddon, J. B., Hastie, T., Tibshirani, R., Sorlie, T., et al. (2005). Robustness, scalability, and integration of a wound–response gene expression signature in predicting breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 102, 3738–3743.

    Article  PubMed  CAS  Google Scholar 

  18. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98, 10869–10874.

    Article  PubMed  CAS  Google Scholar 

  19. Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proceedings of the National Academy of Sciences of the United States of America, 100, 8418–8423.

    Article  PubMed  CAS  Google Scholar 

  20. Sotiriou, C., Neo, S. Y., McShane, L. M., Korn, E. L., Long, P. M., Jazaeri, A., et al. (2003). Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proceedings of the National Academy of Sciences of the United States of America, 100, 10393–10398.

    Article  PubMed  CAS  Google Scholar 

  21. van de Vijver, M. J., He, Y. D., van't Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine, 347, 1999–2009.

    Article  PubMed  Google Scholar 

  22. Fan, C., Oh, D. S., Wessels, L., Weigelt, B., Nuyten, D. S., Nobel, A. B., et al. (2006). Concordance among gene-expression-based predictors for breast cancer. New England Journal of Medicine, 355, 560–569.

    Article  PubMed  CAS  Google Scholar 

  23. Buyse, M., Loi, S., van't Veer, L., Viale, G., Delorenzi, M., Glas, A. M., et al. (2006). Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. Journal of the National Cancer Institute, 98, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  24. Ein-Dor, L., Kela, I., Getz, G., Givol, D., & Domany, E. (2005). Outcome signature genes in breast cancer: Is there a unique set? Bioinformatics, 21, 171–178.

    Article  PubMed  CAS  Google Scholar 

  25. Gupta, P. B., Kuperwasser, C., Brunet, J. P., Ramaswamy, S., Kuo, W. L., Gray, J. W., et al. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genetics, 37, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  26. Hunter, K. (2006). Host genetics influence tumour metastasis. Nature Reviews. Cancer, 6, 141–146.

    Article  PubMed  CAS  Google Scholar 

  27. Park, Y. G., Zhao, X., Lesueur, F., Lowy, D. R., Lancaster, M., Pharoah, P., et al. (2005). Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genetics, 37, 1055–1062.

    Article  PubMed  CAS  Google Scholar 

  28. Yang, H., Crawford, N., Lukes, L., Finney, R., Lancaster, M., & Hunter, K. W. (2005). Metastasis predictive signature profiles pre-exist in normal tissues. Clinical & Experimental Metastasis, 22, 593–603.

    Article  CAS  Google Scholar 

  29. Langley, R. R., & Fidler, I. J. (2007). Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocrine Reviews, 28, 297–321.

    Article  PubMed  CAS  Google Scholar 

  30. Kopfstein, L., & Christofori, G. (2006). Metastasis: Cell-autonomous mechanisms versus contributions by the tumor microenvironment. Cellular and Molecular Life Sciences, 63, 449–468.

    Article  PubMed  CAS  Google Scholar 

  31. Rennebeck, G., Martelli, M., & Kyprianou, N. (2005). Anoikis and survival connections in the tumor microenvironment: Is there a role in prostate cancer metastasis? Cancer Research, 65, 11230–11235.

    Article  PubMed  CAS  Google Scholar 

  32. Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation, 70, 498–505.

    Article  PubMed  Google Scholar 

  33. Fidler, I. J. (2001). Seed and soil revisited: Contribution of the organ microenvironment to cancer metastasis. Surgical Oncology Clinics of North America, 10, 257–269 vii–viiii.

    PubMed  CAS  Google Scholar 

  34. Hall, J. M., & Korach, K. S. (2003). Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Molecular Endocrinology, 17, 792–803.

    Article  PubMed  CAS  Google Scholar 

  35. Indraccolo, S., Pfeffer, U., Minuzzo, S., Esposito, G., Roni, V., Mandruzzato, S., et al. (2007). Identification of genes selectively regulated by IFNs in endothelial cells. Journal of Immunology, 178, 1122–1135.

    CAS  Google Scholar 

  36. Yang, F., Foekens, J. A., Yu, J., Sieuwerts, A. M., Timmermans, M., Klijn, J. G., et al. (2006). Laser microdissection and microarray analysis of breast tumors reveal ER-alpha related genes and pathways. Oncogene, 25, 1413–1419.

    Article  PubMed  CAS  Google Scholar 

  37. Schuetz, C. S., Bonin, M., Clare, S. E., Nieselt, K., Sotlar, K., Walter, M., et al. (2006). Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Research, 66, 5278–5286.

    Article  PubMed  CAS  Google Scholar 

  38. Vecchi, M., Nuciforo, P., Romagnoli, S., Confalonieri, S., Pellegrini, C., Serio, G., et al. (2007). Gene expression analysis of early and advanced gastric cancers. Oncogene, 26, 4284–4294.

    Article  PubMed  CAS  Google Scholar 

  39. Dennis Jr., G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., et al. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4, P3.

    Article  PubMed  Google Scholar 

  40. Hosack, D. A., Dennis Jr., G., Sherman, B. T., Lane, H. C., & Lempicki, R. A. (2003). Identifying biological themes within lists of genes with EASE. Genome Biology, 4, R70.

    Article  PubMed  Google Scholar 

  41. Miller, L. D., Smeds, J., George, J., Vega, V. B., Vergara, L., Ploner, A., et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences of the United States of America, 102, 13550–13555.

    Article  PubMed  CAS  Google Scholar 

  42. Pawitan, Y., Bjohle, J., Amler, L., Borg, A. L., Egyhazi, S., Hall, P., et al. (2005). Gene expression profiling spares early breast cancer patients from adjuvant therapy: Derived and validated in two population-based cohorts. Breast Cancer Research, 7, R953–R964.

    Article  PubMed  CAS  Google Scholar 

  43. Souttou, B., Raulais, D., & Vigny, M. (2001). Pleiotrophin induces angiogenesis: Involvement of the phosphoinositide-3 kinase but not the nitric oxide synthase pathways. Journal of Cellular Physiology, 187, 59–64.

    Article  PubMed  CAS  Google Scholar 

  44. Souttou, B., Ahmad, S., Riegel, A. T., & Wellstein, A. (1997). Signal transduction pathways involved in the mitogenic activity of pleiotrophin. Implication of mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Journal of Biological Chemistry, 272, 19588–19593.

    Article  PubMed  CAS  Google Scholar 

  45. Wu, H., Barusevicius, A., Babb, J., Klein-Szanto, A., Godwin, A., Elenitsas, R., et al. (2005). Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential. Journal of Cutaneous Pathology, 32, 125–130.

    Article  PubMed  CAS  Google Scholar 

  46. Czubayko, F., Schulte, A. M., Berchem, G. J., & Wellstein, A. (1996). Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proceedings of the National Academy of Sciences of the United States of America, 93, 14753–14758.

    Article  PubMed  CAS  Google Scholar 

  47. Malerczyk, C., Schulte, A. M., Czubayko, F., Bellon, L., Macejak, D., Riegel, A. T., et al. (2005). Ribozyme targeting of the growth factor pleiotrophin in established tumors: A gene therapy approach. Gene Therapy, 12, 339–346.

    Article  PubMed  CAS  Google Scholar 

  48. Chang, Y., Zuka, M., Perez-Pinera, P., Astudillo, A., Mortimer, J., Berenson, J. R., et al. (2007). Secretion of pleiotrophin stimulates breast cancer progression through remodeling of the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 104, 10888–10893.

    Article  PubMed  CAS  Google Scholar 

  49. Horak, C. E., Lee, J. H., Elkahloun, A. G., Boissan, M., Dumont, S., Maga, T. K., et al. (2007). Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Research, 67, 7238–7246.

    Article  PubMed  CAS  Google Scholar 

  50. Jager, R., List, B., Knabbe, C., Souttou, B., Raulais, D., Zeiler, T., et al. (2002). Serum levels of the angiogenic factor pleiotrophin in relation to disease stage in lung cancer patients. British Journal of Cancer, 86, 858–863.

    Article  PubMed  CAS  Google Scholar 

  51. Liotta, L. A., Mandler, R., Murano, G., Katz, D. A., Gordon, R. K., Chiang, P. K., et al. (1986). Tumor cell autocrine motility factor. Proceedings of the National Academy of Sciences of the United States of America, 83, 3302–3306.

    Article  PubMed  CAS  Google Scholar 

  52. Funasaka, T., Yanagawa, T., Hogan, V., & Raz, A. (2005). Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB Journal, 19, 1422–1430.

    Article  PubMed  CAS  Google Scholar 

  53. Funasaka, T., Hu, H., Yanagawa, T., Hogan, V., & Raz, A. (2007). Down-regulation of phosphoglucose isomerase/autocrine motility factor results in mesenchymal-to-epithelial transition of human lung fibrosarcoma cells. Cancer Research, 67, 4236–4243.

    Article  PubMed  CAS  Google Scholar 

  54. Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.

    Article  PubMed  CAS  Google Scholar 

  55. Minty, A., Chalon, P., Derocq, J. M., Dumont, X., Guillemot, J. C., Kaghad, M., et al. (1993). Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature, 362, 248–250.

    Article  PubMed  CAS  Google Scholar 

  56. McKenzie, A. N., Culpepper, J. A., de Waal Malefyt, R., Briere, F., Punnonen, J., Aversa, G., et al. (1993). Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proceedings of the National Academy of Sciences of the United States of America, 90, 3735–3739.

    Article  PubMed  CAS  Google Scholar 

  57. McKenzie, G. J., Fallon, P. G., Emson, C. L., Grencis, R. K., & McKenzie, A. N. (1999). Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. Journal of Experimental Medicine, 189, 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  58. Cho, S. J., Kang, M. J., Homer, R. J., Kang, H. R., Zhang, X., Lee, P. J., et al. (2006). Role of early growth response-1 (Egr-1) in interleukin-13-induced inflammation and remodeling. Journal of Biological Chemistry, 281, 8161–8168.

    Article  PubMed  CAS  Google Scholar 

  59. Bernard, J., Treton, D., Vermot-Desroches, C., Boden, C., Horellou, P., Angevin, E., et al. (2001). Expression of interleukin 13 receptor in glioma and renal cell carcinoma: IL13Ralpha2 as a decoy receptor for IL13. Laboratory Investigation, 81, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  60. Albini, A., Tosetti, F., Benelli, R., & Noonan, D. M. (2005). Tumor inflammatory angiogenesis and its chemoprevention. Cancer Research, 65, 10637–10641.

    Article  PubMed  CAS  Google Scholar 

  61. Benelli, R., Morini, M., Carrozzino, F., Ferrari, N., Minghelli, S., Santi, L., et al. (2002). Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB Journal, 16, 267–269.

    PubMed  CAS  Google Scholar 

  62. Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172, 5034–5040.

    CAS  Google Scholar 

  63. Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews. Cancer, 7, 139–147.

    Article  PubMed  CAS  Google Scholar 

  64. Bachmeier, B. E., Iancu, C. M., Jochum, M., & Nerlich, A. G. (2005). Matrix metalloproteinases in cancer: Comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Review of Anticancer Therapy, 5, 149–163.

    Article  PubMed  CAS  Google Scholar 

  65. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–2392.

    Article  PubMed  CAS  Google Scholar 

  66. Larsen, M., Artym, V. V., Green, J. A., & Yamada, K. M. (2006). The matrix reorganized: Extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology, 18, 463–471.

    Article  PubMed  CAS  Google Scholar 

  67. Girasole, G., Passeri, G., Jilka, R. L., & Manolagas, S. C. (1994). Interleukin-11: A new cytokine critical for osteoclast development. Journal of Clinical Investigation, 93, 1516–1524.

    PubMed  CAS  Google Scholar 

  68. Du, X., & Williams, D. A. (1997). Interleukin-11: Review of molecular, cell biology, and clinical use. Blood, 89, 3897–3908.

    PubMed  CAS  Google Scholar 

  69. Hanada, K., Perry-Lalley, D. M., Ohnmacht, G. A., Bettinotti, M. P., & Yang, J. C. (2001). Identification of fibroblast growth factor-5 as an overexpressed antigen in multiple human adenocarcinomas. Cancer Research, 61, 5511–5516.

    PubMed  CAS  Google Scholar 

  70. Iruela-Arispe, M. L., Carpizo, D., & Luque, A. (2003). ADAMTS1: A matrix metalloprotease with angioinhibitory properties. Annals of the New York Academy of Sciences, 995, 183–190.

    Article  PubMed  CAS  Google Scholar 

  71. Bezakova, G., & Ruegg, M. A. (2003). New insights into the roles of agrin. Nature Reviews. Molecular Cell Biology, 4, 295–308.

    Article  PubMed  CAS  Google Scholar 

  72. Morisada, T., Kubota, Y., Urano, T., Suda, T., & Oike, Y. (2006). Angiopoietins and angiopoietin-like proteins in angiogenesis. Endothelium, 13, 71–79.

    Article  PubMed  CAS  Google Scholar 

  73. Vogel, W. F. (2001). Collagen-receptor signaling in health and disease. European Journal of Dermatolology, 11, 506–514.

    CAS  Google Scholar 

  74. Krause, S. W., Rehli, M., & Andreesen, R. (1998). Carboxypeptidase M as a marker of macrophage maturation. Immunological Reviews, 161, 119–127.

    Article  PubMed  CAS  Google Scholar 

  75. Matthews, K. W., Mueller-Ortiz, S. L., & Wetsel, R. A. (2004). Carboxypeptidase N: A pleiotropic regulator of inflammation. Immunological Reviews, 40, 785–793.

    CAS  Google Scholar 

  76. Leask, A., & Abraham, D. J. (2003). The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochemistry and Cell Biology, 81, 355–363.

    Article  PubMed  CAS  Google Scholar 

  77. Dhawan, P., & Richmond, A. (2002). Role of CXCL1 in tumorigenesis of melanoma. Journal of Leukocyte Biology, 72, 9–18.

    PubMed  CAS  Google Scholar 

  78. Klenotic, P. A., Munier, F. L., Marmorstein, L. Y., & Anand-Apte, B. (2004). Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a binding partner of epithelial growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1). Implications for macular degenerations. Journal of Biological Chemistry, 279, 30469–30473.

    Article  PubMed  CAS  Google Scholar 

  79. Taylor, D. S., Cheng, X., Pawlowski, J. E., Wallace, A. R., Ferrer, P., & Molloy, C. J. (1999). Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin. Proceedings of the National Academy of Sciences of the United States of America, 96, 1633–1638.

    Article  PubMed  CAS  Google Scholar 

  80. Ruf, W., Dorfleutner, A., & Riewald, M. (2003). Specificity of coagulation factor signaling. Journal of Thrombosis and Haemostasis, 1, 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  81. Yi, C. H., Smith, D. J., West, W. W., & Hollingsworth, M. A. (2007). Loss of fibulin-2 expression is associated with breast cancer progression. American Journal of Pathology, 170, 1535–1545.

    Article  PubMed  CAS  Google Scholar 

  82. Chen, Q., Sivakumar, P., Barley, C., Peters, D. M., Gomes, R. R., Farach-Carson, M. C., et al. (2007). Potential role for heparan sulfate proteoglycans in regulation of TGF-beta by modulating assembly of latent TGF-beta binding protein-1 (LTBP1). Journal of Biological Chemistry, 282, 26418–26430.

    Article  PubMed  CAS  Google Scholar 

  83. Piecha, D., Wiberg, C., Morgelin, M., Reinhardt, D. P., Deak, F., Maurer, P., et al. (2002). Matrilin-2 interacts with itself and with other extracellular matrix proteins. Biochemical Journal, 367, 715–721.

    Article  PubMed  CAS  Google Scholar 

  84. Rudolph-Owen, L. A., & Matrisian, L. M. (1998). Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. Journal of Mammary Gland Biology and Neoplasia, 3, 177–189.

    Article  PubMed  CAS  Google Scholar 

  85. Martinek, N., Shahab, J., Sodek, J., & Ringuette, M. (2007). Is SPARC an evolutionarily conserved collagen chaperone. Journal of Dental Research, 86, 296–305.

    PubMed  CAS  Google Scholar 

  86. Orend, G., & Chiquet-Ehrismann, R. (2006). Tenascin-C induced signaling in cancer. Cancer Letter, 244, 143–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ambra Zuccarino for their help with the data analysis and Douglas Noonan (University of Insubria, Varese) for critical reading. We thank Paola Corradino (Advanced Biotechnology Center, Genova) and Virginia Dolcini (IRCCS MultiMedica, Milan) for data management and revision of the manuscript. The authors acknowledge contributions from following institutions: AIRC, Ministero della Salute, Istituto Superiore della Sanità, Ministero dell’Istruzione, dell’Università e della Ricerca, Progetto Fondo per gli investimenti della ricerca di base (FIRB-LITBIO), Progetto Comitato Interministeriale per la Programmazione Economica-Regione Liguria, Compagnia San Paolo di Torino, Fondazione CARIGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Albini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albini, A., Mirisola, V. & Pfeffer, U. Metastasis signatures: genes regulating tumor–microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27, 75–83 (2008). https://doi.org/10.1007/s10555-007-9111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9111-x

Keywords

Navigation