Skip to main content

Advertisement

Log in

Modeling prostate cancer: a perspective on transgenic mouse models

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics, 2008. CA: A Cancer Journal for Clinicians, 58(2), 71–96.

    Google Scholar 

  2. Ferlay, J., Autier, P., Boniol, M., Heanue, M., Colombet, M., & Boyle, P. (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Annals of Oncology, 18(3), 581–592.

    PubMed  CAS  Google Scholar 

  3. Isaacs, J. T., Heston, W. D., Weissman, R. M., & Coffey, D. S. (1978). Animal models of the hormone-sensitive and -insensitive prostatic adenocarcinomas, Dunning R-3327-H, R-3327-HI, and R-3327-AT. Cancer Research, 38(11 Pt 2), 4353–4359.

    PubMed  CAS  Google Scholar 

  4. Pollard, M. (1998). Lobund-Wistar rat model of prostate cancer in man. Prostate, 37(1), 1–4.

    PubMed  CAS  Google Scholar 

  5. Banerjee, P. P., Banerjee, S., Lai, J. M., Strandberg, J. D., Zirkin, B. R., & Brown, T. R. (1998). Age-dependent and lobe-specific spontaneous hyperplasia in the brown Norway rat prostate. Biology of Reproduction, 59(5), 1163–1170.

    PubMed  CAS  Google Scholar 

  6. Waters, D. J., Sakr, W. A., Hayden, D. W., Lang, C. M., McKinney, L., Murphy, G. P., et al. (1998). Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate, 36(1), 64–67.

    PubMed  CAS  Google Scholar 

  7. Obradovich, J., Walshaw, R., & Goullaud, E. (1987). The influence of castration on the development of prostatic carcinoma in the dog. 43 cases (1978-1985). Journal of Veterinary Internal Medicine, 1(4), 183–187.

    PubMed  CAS  Google Scholar 

  8. Rangarajan, A., & Weinberg, R. A. (2003). Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Reviews. Cancer, 3(12), 952–959.

    PubMed  CAS  Google Scholar 

  9. DePinho, R. A. (2000). The age of cancer. Nature, 408(6809), 248–254.

    PubMed  CAS  Google Scholar 

  10. Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986). Morphogenesis of ductal networks in the mouse prostate. Biology of Reproduction, 34(5), 961–971.

    PubMed  CAS  Google Scholar 

  11. Hayashi, N., Sugimura, Y., Kawamura, J., Donjacour, A. A., & Cunha, G. R. (1991). Morphological and functional heterogeneity in the rat prostatic gland. Biology of Reproduction, 45(2), 308–321.

    PubMed  CAS  Google Scholar 

  12. Cunha, G. R., Donjacour, A. A., Cooke, P. S., Mee, S., Bigsby, R. M., Higgins, S. J., et al. (1987). The endocrinology and developmental biology of the prostate. Endocrine Reviews, 8(3), 338–362.

    PubMed  CAS  Google Scholar 

  13. Tsujimura, A., Koikawa, Y., Salm, S., Takao, T., Coetzee, S., Moscatelli, D., et al. (2002). Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. Journal of Cell Biology, 157(7), 1257–1265.

    PubMed  CAS  Google Scholar 

  14. Salm, S. N., Burger, P. E., Coetzee, S., Goto, K., Moscatelli, D., & Wilson, E. L. (2005). TGF-{beta} maintains dormancy of prostatic stem cells in the proximal region of ducts. Journal of Cell Biology, 170(1), 81–90.

    PubMed  CAS  Google Scholar 

  15. Leong, K. G., Wang, B. E., Johnson, L., & Gao, W. Q. (2008). Generation of a prostate from a single adult stem cell. Nature, 456(7223), 804–808.

    PubMed  CAS  Google Scholar 

  16. Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. American Journal of Pathology, 120(3), 464–477.

    PubMed  CAS  Google Scholar 

  17. Thalmann, G. N., Anezinis, P. E., Chang, S. M., Zhau, H. E., Kim, E. E., Hopwood, V. L., et al. (1994). Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Research, 54(10), 2577–2581.

    PubMed  CAS  Google Scholar 

  18. Stephenson, R. A., Dinney, C. P., Gohji, K., Ordonez, N. G., Killion, J. J., & Fidler, I. J. (1992). Metastatic model for human prostate cancer using orthotopic implantation in nude mice. Journal of the National Cancer Institute, 84(12), 951–957.

    PubMed  CAS  Google Scholar 

  19. van Weerden, W. M., & Romijn, J. C. (2000). Use of nude mouse xenograft models in prostate cancer research. Prostate, 43(4), 263–271.

    PubMed  Google Scholar 

  20. van Bokhoven, A., Varella-Garcia, M., Korch, C., Johannes, W. U., Smith, E. E., Miller, H. L., et al. (2003). Molecular characterization of human prostate carcinoma cell lines. Prostate, 57(3), 205–225.

    PubMed  Google Scholar 

  21. Sobel, R. E., & Sadar, M. D. (2005). Cell lines used in prostate cancer research: a compendium of old and new lines–part 1. Journal of Urology, 173(2), 342–359.

    PubMed  CAS  Google Scholar 

  22. Sobel, R. E., & Sadar, M. D. (2005). Cell lines used in prostate cancer research: a compendium of old and new lines–part 2. Journal of Urology, 173(2), 360–372.

    PubMed  CAS  Google Scholar 

  23. Bostwick, D. G., Burke, H. B., Djakiew, D., Euling, S., Ho, S. M., Landolph, J., et al. (2004). Human prostate cancer risk factors. Cancer, 101(10 Suppl), 2371–2490.

    PubMed  CAS  Google Scholar 

  24. Levine, A. J. (1990). Tumor suppressor genes. Bioessays, 12(2), 60–66.

    PubMed  CAS  Google Scholar 

  25. Frese, K. K., & Tuveson, D. A. (2007). Maximizing mouse cancer models. Nature Reviews. Cancer, 7(9), 645–658.

    PubMed  CAS  Google Scholar 

  26. Becher, O. J., & Holland, E. C. (2006). Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Research, 66(7), 3355–3358. discussion 3358–3359.

    PubMed  CAS  Google Scholar 

  27. Thompson, T. C., Southgate, J., Kitchener, G., & Land, H. (1989). Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell, 56(6), 917–930.

    PubMed  CAS  Google Scholar 

  28. Thompson, T. C., Timme, T. L., Park, S. H., Yang, G., & Ren, C. (2000). Mouse prostate reconstitution model system: a series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate, 43(4), 248–254.

    PubMed  CAS  Google Scholar 

  29. Thompson, T. C., Kadmon, D., Timme, T. L., Merz, V. W., Egawa, S., Krebs, T., et al. (1991). Experimental oncogene induced prostate cancer. Cancer Surveys, 11, 55–71.

    PubMed  CAS  Google Scholar 

  30. Thompson, T. C., Park, S. H., Timme, T. L., Ren, C., Eastham, J. A., Donehower, L. A., et al. (1995). Loss of p53 function leads to metastasis in ras + myc-initiated mouse prostate cancer. Oncogene, 10(5), 869–879.

    PubMed  CAS  Google Scholar 

  31. Williams, K., Fernandez, S., Stien, X., Ishii, K., Love, H. D., Lau, Y. F., et al. (2005). Unopposed c-MYC expression in benign prostatic epithelium causes a cancer phenotype. Prostate, 63(4), 369–384.

    PubMed  CAS  Google Scholar 

  32. Khatri, A., Zhang, B., Doherty, E., Chapman, J., Ow, K., Pwint, H., et al. (2006). Combination of cytosine deaminase with uracil phosphoribosyl transferase leads to local and distant bystander effects against RM1 prostate cancer in mice. Journal of Gene Medicine, 8(9), 1086–1096.

    PubMed  CAS  Google Scholar 

  33. Martiniello-Wilks, R., Wang, X. Y., Voeks, D. J., Dane, A., Shaw, J. M., Mortensen, E., et al. (2004). Purine nucleoside phosphorylase and fludarabine phosphate gene-directed enzyme prodrug therapy suppresses primary tumour growth and pseudo-metastases in a mouse model of prostate cancer. Journal of Gene Medicine, 6(12), 1343–1357.

    PubMed  CAS  Google Scholar 

  34. Voeks, D., Martiniello-Wilks, R., Madden, V., Smith, K., Bennetts, E., Both, G. W., et al. (2002). Gene therapy for prostate cancer delivered by ovine adenovirus and mediated by purine nucleoside phosphorylase and fludarabine in mouse models. Gene Therapy, 9(12), 759–768.

    PubMed  CAS  Google Scholar 

  35. Hall, S. J., Mutchnik, S. E., Chen, S. H., Woo, S. L., & Thompson, T. C. (1997). Adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy leads to systemic activity against spontaneous and induced metastasis in an orthotopic mouse model of prostate cancer. International Journal of Cancer, 70(2), 183–187.

    CAS  Google Scholar 

  36. Hall, S. J., Mutchnik, S. E., Yang, G., Timme, T. L., Nasu, Y., Bangma, C. H., et al. (1999). Cooperative therapeutic effects of androgen ablation and adenovirus-mediated herpes simplex virus thymidine kinase gene and ganciclovir therapy in experimental prostate cancer. Cancer Gene Therapy, 6(1), 54–63.

    PubMed  CAS  Google Scholar 

  37. Slawin, K., Kadmon, D., Park, S. H., Scardino, P. T., Anzano, M., Sporn, M. B., et al. (1993). Dietary fenretinide, a synthetic retinoid, decreases the tumor incidence and the tumor mass of ras + myc-induced carcinomas in the mouse prostate reconstitution model system. Cancer Research, 53(19), 4461–4465.

    PubMed  CAS  Google Scholar 

  38. Adams, J. M., Harris, A. W., Pinkert, C. A., Corcoran, L. M., Alexander, W. S., Cory, S., et al. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature, 318(6046), 533–538.

    PubMed  CAS  Google Scholar 

  39. Brinster, R. L., Chen, H. Y., Messing, A., van Dyke, T., Levine, A. J., & Palmiter, R. D. (1984). Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell, 37(2), 367–379.

    PubMed  CAS  Google Scholar 

  40. Hanahan, D. (1989). Transgenic mice as probes into complex systems. Science, 246(4935), 1265–1275.

    PubMed  CAS  Google Scholar 

  41. Green, J. E., Greenberg, N. M., Ashendel, C. L., Barrett, J. C., Boone, C., Getzenberg, R. H., et al. (1998). Workgroup 3: transgenic and reconstitution models of prostate cancer. Prostate, 36(1), 59–63.

    PubMed  CAS  Google Scholar 

  42. Ahmad, I., Sansom, O. J., & Leung, H. Y. (2008). Advances in mouse models of prostate cancer. Expert Reviews in Molecular Medicine, 10, e16.

    PubMed  Google Scholar 

  43. Kasper, S. (2005). Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. Journal of Cellular Biochemistry, 94(2), 279–297.

    PubMed  CAS  Google Scholar 

  44. Abate-Shen, C., & Shen, M. M. (2002). Mouse models of prostate carcinogenesis. Trends in Genetics, 18(5), S1–S5.

    PubMed  CAS  Google Scholar 

  45. Huss, W. J., Maddison, L. A., & Greenberg, N. M. (2001). Autochthonous mouse models for prostate cancer: past, present and future. Seminars in Cancer Biology, 11(3), 245–260.

    PubMed  CAS  Google Scholar 

  46. Furth, P. A. (1998). SV40 rodent tumour models as paradigms of human disease: transgenic mouse models. Developments in Biological Standardization, 94, 281–287.

    PubMed  CAS  Google Scholar 

  47. Greenberg, N. M., DeMayo, F., Finegold, M. J., Medina, D., Tilley, W. D., Aspinall, J. O., et al. (1995). Prostate cancer in a transgenic mouse. Proceedings of the National Academy of Sciences of the United States of America, 92(8), 3439–3443.

    PubMed  CAS  Google Scholar 

  48. Gingrich, J. R., Barrios, R. J., Morton, R. A., Boyce, B. F., DeMayo, F. J., Finegold, M. J., et al. (1996). Metastatic prostate cancer in a transgenic mouse. Cancer Research, 56(18), 4096–4102.

    PubMed  CAS  Google Scholar 

  49. Dilworth, S. M. (1990). Cell alterations induced by the large T-antigens of SV40 and polyoma virus. Seminars in Cancer Biology, 1(6), 407–414.

    PubMed  CAS  Google Scholar 

  50. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., & Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell, 75(5), 887–897.

    PubMed  CAS  Google Scholar 

  51. Gingrich, J. R., Barrios, R. J., Foster, B. A., & Greenberg, N. M. (1999). Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer and Prostatic Diseases, 2(2), 70–75.

    PubMed  Google Scholar 

  52. Gingrich, J. R., Barrios, R. J., Kattan, M. W., Nahm, H. S., Finegold, M. J., & Greenberg, N. M. (1997). Androgen-independent prostate cancer progression in the TRAMP model. Cancer Research, 57(21), 4687–4691.

    PubMed  CAS  Google Scholar 

  53. Han, G., Foster, B. A., Mistry, S., Buchanan, G., Harris, J. M., Tilley, W. D., et al. (2001). Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. Journal of Biological Chemistry, 276(14), 11204–11213.

    PubMed  CAS  Google Scholar 

  54. Haram, K. M., Peltier, H. J., Lu, B., Bhasin, M., Otu, H. H., Choy, B., et al. (2008). Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy. Prostate, 68(14), 1517–1530.

    PubMed  CAS  Google Scholar 

  55. Foster, B. A., Gingrich, J. R., Kwon, E. D., Madias, C., & Greenberg, N. M. (1997). Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Research, 57(16), 3325–3330.

    PubMed  CAS  Google Scholar 

  56. Jeet, V., Ow, K., Doherty, E., Curley, B., Russell, P. J., & Khatri, A. (2008). Broadening of transgenic adenocarcinoma of the mouse prostate (TRAMP) model to represent late stage androgen depletion independent cancer. Prostate, 68(5), 548–562.

    PubMed  CAS  Google Scholar 

  57. Huss, W. J., Hanrahan, C. F., Barrios, R. J., Simons, J. W., & Greenberg, N. M. (2001). Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Research, 61(6), 2736–2743.

    PubMed  CAS  Google Scholar 

  58. Kwon, E. D., Hurwitz, A. A., Foster, B. A., Madias, C., Feldhaus, A. L., Greenberg, N. M., et al. (1997). Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 94(15), 8099–8103.

    PubMed  CAS  Google Scholar 

  59. Voeks, D. J., Martiniello-Wilks, R., & Russell, P. J. (2002). Derivation of MPR and TRAMP models of prostate cancer and prostate cancer metastasis for evaluation of therapeutic strategies. Urologic Oncology, 7(3), 111–118.

    PubMed  CAS  Google Scholar 

  60. Kasper, S., Sheppard, P. C., Yan, Y., Pettigrew, N., Borowsky, A. D., Prins, G. S., et al. (1998). Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Laboratory Investigation, 78(3), 319–333.

    PubMed  CAS  Google Scholar 

  61. Masumori, N., Thomas, T. Z., Chaurand, P., Case, T., Paul, M., Kasper, S., et al. (2001). A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Research, 61(5), 2239–2249.

    PubMed  CAS  Google Scholar 

  62. Venkateswaran, V., Fleshner, N. E., Sugar, L. M., & Klotz, L. H. (2004). Antioxidants block prostate cancer in lady transgenic mice. Cancer Research, 64(16), 5891–5896.

    PubMed  CAS  Google Scholar 

  63. Bonkhoff, H. (1998). Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate. Supplement, 8, 18–22.

    PubMed  CAS  Google Scholar 

  64. Bonkhoff, H., & Fixemer, T. (2004). Neuroendocrine differentiation in prostate cancer. An unrecognized and therapy-resistant phenotype. Urologe A, 43(7), 836–842.

    PubMed  CAS  Google Scholar 

  65. Maroulakou, I. G., Anver, M., Garrett, L., & Green, J. E. (1994). Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 11236–11240.

    PubMed  CAS  Google Scholar 

  66. Shibata, M. A., Jorcyk, C. L., Liu, M. L., Yoshidome, K., Gold, L. G., & Green, J. E. (1998). The C3(1)/SV40 T antigen transgenic mouse model of prostate and mammary cancer. Toxicologic Pathology, 26(1), 177–182.

    PubMed  CAS  Google Scholar 

  67. Garabedian, E. M., Humphrey, P. A., & Gordon, J. I. (1998). A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15382–15387.

    PubMed  CAS  Google Scholar 

  68. Perez-Stable, C., Altman, N. H., Mehta, P. P., Deftos, L. J., & Roos, B. A. (1997). Prostate cancer progression, metastasis, and gene expression in transgenic mice. Cancer Research, 57(5), 900–906.

    PubMed  CAS  Google Scholar 

  69. Gabril, M. Y., Duan, W., Wu, G., Moussa, M., Izawa, J. I., Panchal, C. J., et al. (2005). A novel knock-in prostate cancer model demonstrates biology similar to that of human prostate cancer and suitable for preclinical studies. Molecular Therapy, 11(3), 348–362.

    PubMed  CAS  Google Scholar 

  70. Huizen, I. V., Wu, G., Moussa, M., Chin, J. L., Fenster, A., Lacefield, J. C., et al. (2005). Establishment of a serum tumor marker for preclinical trials of mouse prostate cancer models. Clinical Cancer Research, 11(21), 7911–7919.

    PubMed  Google Scholar 

  71. Jasani, B., Cristaudo, A., Emri, S. A., Gazdar, A. F., Gibbs, A., Krynska, B., et al. (2001). Association of SV40 with human tumours. Seminars in Cancer Biology, 11(1), 49–61.

    PubMed  CAS  Google Scholar 

  72. Qian, J., Jenkins, R. B., & Bostwick, D. G. (1997). Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Modern Pathology, 10(11), 1113–1119.

    PubMed  CAS  Google Scholar 

  73. Jenkins, R. B., Qian, J., Lieber, M. M., & Bostwick, D. G. (1997). Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Research, 57(3), 524–531.

    PubMed  CAS  Google Scholar 

  74. Zhang, X., Lee, C., Ng, P. Y., Rubin, M., Shabsigh, A., & Buttyan, R. (2000). Prostatic neoplasia in transgenic mice with prostate-directed overexpression of the c-myc oncoprotein. Prostate, 43(4), 278–285.

    PubMed  CAS  Google Scholar 

  75. Ellwood-Yen, K., Graeber, T. G., Wongvipat, J., Iruela-Arispe, M. L., Zhang, J., Matusik, R., et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell, 4(3), 223–238.

    PubMed  CAS  Google Scholar 

  76. Stanbrough, M., Leav, I., Kwan, P. W., Bubley, G. J., & Balk, S. P. (2001). Prostatic intraepithelial neoplasia in mice expressing an androgen receptor transgene in prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10823–10828.

    PubMed  CAS  Google Scholar 

  77. Couse, J. F., Curtis Hewitt, S., & Korach, K. S. (2000). Receptor null mice reveal contrasting roles for estrogen receptor alpha and beta in reproductive tissues. Journal of Steroid Biochemistry and Molecular Biology, 74(5), 287–296.

    PubMed  CAS  Google Scholar 

  78. Huang, J., Powell, W. C., Khodavirdi, A. C., Wu, J., Makita, T., Cardiff, R. D., et al. (2002). Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptor alpha allele in the prostate epithelium. Cancer Research, 62(16), 4812–4819.

    PubMed  CAS  Google Scholar 

  79. Lohnes, D., Kastner, P., Dierich, A., Mark, M., LeMeur, M., & Chambon, P. (1993). Function of retinoic acid receptor gamma in the mouse. Cell, 73(4), 643–658.

    PubMed  CAS  Google Scholar 

  80. Ozen, M., Giri, D., Ropiquet, F., Mansukhani, A., & Ittmann, M. (2001). Role of fibroblast growth factor receptor signaling in prostate cancer cell survival. Journal of the National Cancer Institute, 93(23), 1783–1790.

    PubMed  CAS  Google Scholar 

  81. Foster, B. A., Kaplan, P. J., & Greenberg, N. M. (1999). Characterization of the FGF axis and identification of a novel FGFR1iiic isoform during prostate cancer progression in the TRAMP model. Prostate Cancer and Prostatic Diseases, 2(2), 76–82.

    PubMed  CAS  Google Scholar 

  82. Russell, P. J., Bennett, S., & Stricker, P. (1998). Growth factor involvement in progression of prostate cancer. Clinical Chemistry, 44(4), 705–723.

    PubMed  CAS  Google Scholar 

  83. Cunha, G. R., Alarid, E. T., Turner, T., Donjacour, A. A., Boutin, E. L., & Foster, B. A. (1992). Normal and abnormal development of the male urogenital tract. Role of androgens, mesenchymal-epithelial interactions, and growth factors. Journal of Andrology, 13(6), 465–475.

    PubMed  CAS  Google Scholar 

  84. Polnaszek, N., Kwabi-Addo, B., Peterson, L. E., Ozen, M., Greenberg, N. M., Ortega, S., et al. (2003). Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Research, 63(18), 5754–5760.

    PubMed  CAS  Google Scholar 

  85. Song, Z., Wu, X., Powell, W. C., Cardiff, R. D., Cohen, M. B., Tin, R. T., et al. (2002). Fibroblast growth factor 8 isoform B overexpression in prostate epithelium: a new mouse model for prostatic intraepithelial neoplasia. Cancer Research, 62(17), 5096–5105.

    PubMed  CAS  Google Scholar 

  86. Foster, B. A., Evangelou, A., Gingrich, J. R., Kaplan, P. J., DeMayo, F., & Greenberg, N. M. (2002). Enforced expression of FGF-7 promotes epithelial hyperplasia whereas a dominant negative FGFR2iiib promotes the emergence of neuroendocrine phenotype in prostate glands of transgenic mice. Differentiation, 70(9–10), 624–632.

    PubMed  CAS  Google Scholar 

  87. Freeman, K. W., Welm, B. E., Gangula, R. D., Rosen, J. M., Ittmann, M., Greenberg, N. M., et al. (2003). Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Research, 63(23), 8256–8263.

    PubMed  CAS  Google Scholar 

  88. Culig, Z., Hobisch, A., Cronauer, M. V., Radmayr, C., Trapman, J., Hittmair, A., et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Research, 54(20), 5474–5478.

    PubMed  CAS  Google Scholar 

  89. DiGiovanni, J., Bol, D. K., Wilker, E., Beltran, L., Carbajal, S., Moats, S., et al. (2000). Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Research, 60(6), 1561–1570.

    PubMed  CAS  Google Scholar 

  90. Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.

    PubMed  CAS  Google Scholar 

  91. Konno-Takahashi, N., Takeuchi, T., Shimizu, T., Nishimatsu, H., Fukuhara, H., Kamijo, T., et al. (2003). Engineered IGF-I expression induces glandular enlargement in the murine prostate. Journal of Endocrinology, 177(3), 389–398.

    PubMed  CAS  Google Scholar 

  92. DiGiovanni, J., Kiguchi, K., Frijhoff, A., Wilker, E., Bol, D. K., Beltran, L., et al. (2000). Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3455–3460.

    PubMed  CAS  Google Scholar 

  93. Ross, J. S., Nazeer, T., Church, K., Amato, C., Figge, H., Rifkin, M. D., et al. (1993). Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer, 72(10), 3020–3028.

    PubMed  CAS  Google Scholar 

  94. Kuhn, E. J., Kurnot, R. A., Sesterhenn, I. A., Chang, E. H., & Moul, J. W. (1993). Expression of the c-erbB-2 (HER-2/neu) oncoprotein in human prostatic carcinoma. Journal of Urology, 150(5 Pt 1), 1427–1433.

    PubMed  CAS  Google Scholar 

  95. Ow, K. T., MH, L. A., Fisher, R., Yang, J.-L., Mameghan, J., Andersen, S., et al. (1995). The prognostic significance of tumor-associated markers p53, HER-2/neu, c-myc, v-H-ras, PCNA and EGFr of local and distant recurrence in localised human prostatic adenocarcinoma. Urologic Oncology, 1(4), 144–152.

    Google Scholar 

  96. Li, Z., Szabolcs, M., Terwilliger, J. D., & Efstratiadis, A. (2006). Prostatic intraepithelial neoplasia and adenocarcinoma in mice expressing a probasin-Neu oncogenic transgene. Carcinogenesis, 27(5), 1054–1067.

    PubMed  CAS  Google Scholar 

  97. Elgavish, A., Wood, P. A., Pinkert, C. A., Eltoum, I. E., Cartee, T., Wilbanks, J., et al. (2004). Transgenic mouse with human mutant p53 expression in the prostate epithelium. Prostate, 61(1), 26–34.

    PubMed  CAS  Google Scholar 

  98. Maddison, L. A., Sutherland, B. W., Barrios, R. J., & Greenberg, N. M. (2004). Conditional deletion of Rb causes early stage prostate cancer. Cancer Research, 64(17), 6018–6025.

    PubMed  CAS  Google Scholar 

  99. Wang, Y., Hayward, S. W., Donjacour, A. A., Young, P., Jacks, T., Sage, J., et al. (2000). Sex hormone-induced carcinogenesis in Rb-deficient prostate tissue. Cancer Research, 60(21), 6008–6017.

    PubMed  CAS  Google Scholar 

  100. Zhou, Z., Flesken-Nikitin, A., Corney, D. C., Wang, W., Goodrich, D. W., Roy-Burman, P., et al. (2006). Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Research, 66(16), 7889–7898.

    PubMed  CAS  Google Scholar 

  101. Bowen, C., Bubendorf, L., Voeller, H. J., Slack, R., Willi, N., Sauter, G., et al. (2000). Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Research, 60(21), 6111–6115.

    PubMed  CAS  Google Scholar 

  102. Abdulkadir, S. A., Magee, J. A., Peters, T. J., Kaleem, Z., Naughton, C. K., Humphrey, P. A., et al. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Molecular and Cellular Biology, 22(5), 1495–1503.

    PubMed  CAS  Google Scholar 

  103. Bhatia-Gaur, R., Donjacour, A. A., Sciavolino, P. J., Kim, M., Desai, N., Young, P., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes and Development, 13(8), 966–977.

    PubMed  CAS  Google Scholar 

  104. Scherl, A., Li, J. F., Cardiff, R. D., & Schreiber-Agus, N. (2004). Prostatic intraepithelial neoplasia and intestinal metaplasia in prostates of probasin-RAS transgenic mice. Prostate, 59(4), 448–459.

    PubMed  CAS  Google Scholar 

  105. Castrillon, D. H., & DePinho, R. A. (2001). Modeling prostate cancer in the mouse. Advances in Cancer Research, 82, 187–204.

    PubMed  CAS  Google Scholar 

  106. Majumder, P. K., Yeh, J. J., George, D. J., Febbo, P. G., Kum, J., Xue, Q., et al. (2003). Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7841–7846.

    PubMed  CAS  Google Scholar 

  107. Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19(4), 348–355.

    PubMed  Google Scholar 

  108. Podsypanina, K., Ellenson, L. H., Nemes, A., Gu, J., Tamura, M., Yamada, K. M., et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1563–1568.

    PubMed  CAS  Google Scholar 

  109. Kwabi-Addo, B., Giri, D., Schmidt, K., Podsypanina, K., Parsons, R., Greenberg, N., et al. (2001). Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11563–11568.

    PubMed  CAS  Google Scholar 

  110. Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell, 4(3), 209–221.

    PubMed  CAS  Google Scholar 

  111. Voelkel-Johnson, C., Voeks, D. J., Greenberg, N. M., Barrios, R., Maggouta, F., Kurtz, D. T., et al. (2000). Genomic instability-based transgenic models of prostate cancer. Carcinogenesis, 21(8), 1623–1627.

    PubMed  CAS  Google Scholar 

  112. Moon, R. T., Bowerman, B., Boutros, M., & Perrimon, N. (2002). The promise and perils of Wnt signaling through beta-catenin. Science, 296(5573), 1644–1646.

    PubMed  CAS  Google Scholar 

  113. Nusse, R., & Varmus, H. E. (1992). Wnt genes. Cell, 69(7), 1073–1087.

    PubMed  CAS  Google Scholar 

  114. Chen, G., Shukeir, N., Potti, A., Sircar, K., Aprikian, A., Goltzman, D., et al. (2004). Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer, 101(6), 1345–1356.

    PubMed  CAS  Google Scholar 

  115. Horvath, L. G., Henshall, S. M., Kench, J. G., Saunders, D. N., Lee, C. S., Golovsky, D., et al. (2004). Membranous expression of secreted frizzled-related protein 4 predicts for good prognosis in localized prostate cancer and inhibits PC3 cellular proliferation in vitro. Clinical Cancer Research, 10(2), 615–625.

    PubMed  CAS  Google Scholar 

  116. Phillips, S. M., Morton, D. G., Lee, S. J., Wallace, D. M., & Neoptolemos, J. P. (1994). Loss of heterozygosity of the retinoblastoma and adenomatous polyposis susceptibility gene loci and in chromosomes 10p, 10q and 16q in human prostate cancer. British Journal of Urology, 73(4), 390–395.

    PubMed  CAS  Google Scholar 

  117. Chesire, D. R., Ewing, C. M., Sauvageot, J., Bova, G. S., & Isaacs, W. B. (2000). Detection and analysis of beta-catenin mutations in prostate cancer. Prostate, 45(4), 323–334.

    PubMed  CAS  Google Scholar 

  118. Bruxvoort, K. J., Charbonneau, H. M., Giambernardi, T. A., Goolsby, J. C., Qian, C. N., Zylstra, C. R., et al. (2007). Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer Research, 67(6), 2490–2496.

    PubMed  CAS  Google Scholar 

  119. Sharpless, N. E., & DePinho, R. A. (1999). The INK4A/ARF locus and its two gene products. Current Opinion in Genetics and Development, 9(1), 22–30.

    PubMed  CAS  Google Scholar 

  120. You, M. J., Castrillon, D. H., Bastian, B. C., O’Hagan, R. C., Bosenberg, M. W., Parsons, R., et al. (2002). Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1455–1460.

    PubMed  CAS  Google Scholar 

  121. Di Cristofano, A., De Acetis, M., Koff, A., Cordon-Cardo, C., & Pandolfi, P. P. (2001). Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nature Genetics, 27(2), 222–224.

    PubMed  Google Scholar 

  122. Kim, M. J., Cardiff, R. D., Desai, N., Banach-Petrosky, W. A., Parsons, R., Shen, M. M., et al. (2002). Cooperativity of Nkx3.1 and Pten loss of function in a mouse model of prostate carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 2884–2889.

    PubMed  CAS  Google Scholar 

  123. Abate-Shen, C., Banach-Petrosky, W. A., Sun, X., Economides, K. D., Desai, N., Gregg, J. P., et al. (2003). Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research, 63(14), 3886–3890.

    PubMed  CAS  Google Scholar 

  124. Chen, M. L., Xu, P. Z., Peng, X. D., Chen, W. S., Guzman, G., Yang, X., et al. (2006). The deficiency of Akt1 is sufficient to suppress tumor development in Pten+/- mice. Genes and Development, 20(12), 1569–1574.

    PubMed  CAS  Google Scholar 

  125. Zhong, C., Saribekyan, G., Liao, C. P., Cohen, M. B., & Roy-Burman, P. (2006). Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis. Cancer Research, 66(4), 2188–2194.

    PubMed  CAS  Google Scholar 

  126. Chen, Z., Trotman, L. C., Shaffer, D., Lin, H. K., Dotan, Z. A., Niki, M., et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 436(7051), 725–730.

    PubMed  CAS  Google Scholar 

  127. Tomlins, S. A., Mehra, R., Rhodes, D. R., Smith, L. R., Roulston, D., Helgeson, B. E., et al. (2006). TMPRSS2:ETV4 gene fusions define a third molecular subtype of prostate cancer. Cancer Research, 66(7), 3396–3400.

    PubMed  CAS  Google Scholar 

  128. Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748), 644–648.

    PubMed  CAS  Google Scholar 

  129. Demichelis, F., Fall, K., Perner, S., Andren, O., Schmidt, F., Setlur, S. R., et al. (2007). TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 26(31), 4596–4599.

    PubMed  CAS  Google Scholar 

  130. Perner, S., & Rubin, M. A. (2008). A variant TMPRSS2 isoform and ERG fusion product in prostate cancer with implications for molecular diagnosis. Modern Pathology, 21(8), 1056. author reply 1056–1057.

    PubMed  Google Scholar 

  131. Perner, S., Demichelis, F., Beroukhim, R., Schmidt, F. H., Mosquera, J. M., Setlur, S., et al. (2006). TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Research, 66(17), 8337–8341.

    PubMed  CAS  Google Scholar 

  132. Tomlins, S. A., Laxman, B., Varambally, S., Cao, X., Yu, J., Helgeson, B. E., et al. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10(2), 177–188.

    PubMed  CAS  Google Scholar 

  133. Carver, B. S., Tran, J., Gopalan, A., Chen, Z., Shaikh, S., Carracedo, A., et al. (2009). Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genetics, 41(5), 619–624.

    PubMed  CAS  Google Scholar 

  134. McCabe, N. P., Madajka, M., Vasanji, A., & Byzova, T. V. (2008). Intraosseous injection of RM1 murine prostate cancer cells promotes rapid osteolysis and periosteal bone deposition. Clinical & Experimental Metastasis, 25(5), 581–590.

    CAS  Google Scholar 

  135. Power, C. A., Pwint, H., Chan, J., Cho, J., Yu, Y., Walsh, W., et al. (2009). A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate, 69(15), 1613–1623.

    PubMed  CAS  Google Scholar 

  136. Gupta, S. (2004). Prostate cancer chemoprevention: models, limitations and potential (Review). International Journal of Oncology, 25(4), 1133–1148.

    PubMed  CAS  Google Scholar 

  137. Wechter, W. J., Leipold, D. D., Murray, E. D., Jr., Quiggle, D., McCracken, J. D., Barrios, R. S., et al. (2000). E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Research, 60(8), 2203–2208.

    PubMed  CAS  Google Scholar 

  138. Gupta, S., Adhami, V. M., Subbarayan, M., MacLennan, G. T., Lewin, J. S., Hafeli, U. O., et al. (2004). Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 64(9), 3334–3343.

    PubMed  CAS  Google Scholar 

  139. Narayanan, B. A., Narayanan, N. K., Pittman, B., & Reddy, B. S. (2004). Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clinical Cancer Research, 10(22), 7727–7737.

    PubMed  CAS  Google Scholar 

  140. Wang, M. H., Grossmann, M. E., & Young, C. Y. (2004). Forced expression of heat-shock protein 70 increases the secretion of Hsp70 and provides protection against tumour growth. British Journal of Cancer, 90(4), 926–931.

    PubMed  CAS  Google Scholar 

  141. Saleem, M., Adhami, V. M., Siddiqui, I. A., & Mukhtar, H. (2003). Tea beverage in chemoprevention of prostate cancer: a mini-review. Nutrition and Cancer, 47(1), 13–23.

    PubMed  CAS  Google Scholar 

  142. Adhami, V. M., Ahmad, N., & Mukhtar, H. (2003). Molecular targets for green tea in prostate cancer prevention. Journal of Nutrition, 133(7 Suppl), 2417S–2424S.

    PubMed  CAS  Google Scholar 

  143. Gupta, S., Ahmad, N., Marengo, S. R., MacLennan, G. T., Greenberg, N. M., & Mukhtar, H. (2000). Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Research, 60(18), 5125–5133.

    PubMed  CAS  Google Scholar 

  144. Raghow, S., Kuliyev, E., Steakley, M., Greenberg, N., & Steiner, M. S. (2000). Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Research, 60(15), 4093–4097.

    PubMed  CAS  Google Scholar 

  145. Bosland, M. C. (1999). Use of animal models in defining efficacy of chemoprevention agents against prostate cancer. European Urology, 35(5–6), 459–463.

    PubMed  CAS  Google Scholar 

  146. Caporali, A., Davalli, P., Astancolle, S., D’Arca, D., Brausi, M., Bettuzzi, S., et al. (2004). The chemopreventive action of catechins in the TRAMP mouse model of prostate carcinogenesis is accompanied by clusterin over-expression. Carcinogenesis, 25(11), 2217–2224.

    PubMed  CAS  Google Scholar 

  147. Lin, X., Gingrich, J. R., Bao, W., Li, J., Haroon, Z. A., & Demark-Wahnefried, W. (2002). Effect of flaxseed supplementation on prostatic carcinoma in transgenic mice. Urology, 60(5), 919–924.

    PubMed  Google Scholar 

  148. Mentor-Marcel, R., Lamartiniere, C. A., Eltoum, I. A., Greenberg, N. M., & Elgavish, A. (2005). Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). Journal of Nutrition, 135(5), 989–995.

    PubMed  CAS  Google Scholar 

  149. Suttie, A. W., Dinse, G. E., Nyska, A., Moser, G. J., Goldsworthy, T. L., & Maronpot, R. R. (2005). An investigation of the effects of late-onset dietary restriction on prostate cancer development in the TRAMP mouse. Toxicologic Pathology, 33(3), 386–397.

    PubMed  CAS  Google Scholar 

  150. Huss, W. J., Lai, L., Barrios, R. J., Hirschi, K. K., & Greenberg, N. M. (2004). Retinoic acid slows progression and promotes apoptosis of spontaneous prostate cancer. Prostate, 61(2), 142–152.

    PubMed  CAS  Google Scholar 

  151. Kumar, A. P., Bhaskaran, S., Ganapathy, M., Crosby, K., Davis, M. D., Kochunov, P., et al. (2007). Akt/cAMP-responsive element binding protein/cyclin D1 network: a novel target for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate model mediated by Nexrutine, a Phellodendron amurense bark extract. Clinical Cancer Research, 13(9), 2784–2794.

    PubMed  CAS  Google Scholar 

  152. Majumder, P. K., Febbo, P. G., Bikoff, R., Berger, R., Xue, Q., McMahon, L. M., et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medicine, 10(6), 594–601.

    PubMed  CAS  Google Scholar 

  153. Cheung, E., Wadhera, P., Dorff, T., & Pinski, J. (2008). Diet and prostate cancer risk reduction. Expert Review of Anticancer Therapy, 8(1), 43–50.

    PubMed  Google Scholar 

  154. Medeiros, R., Morais, A., Vasconcelos, A., Costa, S., Pinto, D., Oliveira, J., et al. (2002). The role of vitamin D receptor gene polymorphisms in the susceptibility to prostate cancer of a southern European population. Journal of Human Genetics, 47(8), 413–418.

    PubMed  CAS  Google Scholar 

  155. Banach-Petrosky, W., Ouyang, X., Gao, H., Nader, K., Ji, Y., Suh, N., et al. (2006). Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clinical Cancer Research, 12(19), 5895–5901.

    PubMed  CAS  Google Scholar 

  156. Perez-Stable, C. M., Schwartz, G. G., Farinas, A., Finegold, M., Binderup, L., Howard, G. A., et al. (2002). The G gamma/T-15 transgenic mouse model of androgen-independent prostate cancer: target cells of carcinogenesis and the effect of the vitamin D analogue EB 1089. Cancer Epidemiology, Biomarkers and Prevention, 11(6), 555–563.

    PubMed  CAS  Google Scholar 

  157. Patterson, R. E., White, E., Kristal, A. R., Neuhouser, M. L., & Potter, J. D. (1997). Vitamin supplements and cancer risk: the epidemiologic evidence. Cancer Causes and Control, 8(5), 786–802.

    PubMed  CAS  Google Scholar 

  158. Kirsh, V. A., Hayes, R. B., Mayne, S. T., Chatterjee, N., Subar, A. F., Dixon, L. B., et al. (2006). Supplemental and dietary vitamin E, beta-carotene, and vitamin C intakes and prostate cancer risk. Journal of the National Cancer Institute, 98(4), 245–254.

    Article  PubMed  CAS  Google Scholar 

  159. Yin, Y., Ni, J., Chen, M., DiMaggio, M. A., Guo, Y., & Yeh, S. (2007). The therapeutic and preventive effect of RRR-alpha-vitamin E succinate on prostate cancer via induction of insulin-like growth factor binding protein-3. Clinical Cancer Research, 13(7), 2271–2280.

    PubMed  CAS  Google Scholar 

  160. Chan, J. M., Stampfer, M. J., Ma, J., Gann, P., Gaziano, J. M., Pollak, M., et al. (2002). Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. Journal of the National Cancer Institute, 94(14), 1099–1106.

    PubMed  CAS  Google Scholar 

  161. Gupta, S., Hastak, K., Ahmad, N., Lewin, J. S., & Mukhtar, H. (2001). Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10350–10355.

    PubMed  CAS  Google Scholar 

  162. Hurwitz, A. A., Foster, B. A., Kwon, E. D., Truong, T., Choi, E. M., Greenberg, N. M., et al. (2000). Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Research, 60(9), 2444–2448.

    PubMed  CAS  Google Scholar 

  163. Liu, Z., Eltoum, I. E., Guo, B., Beck, B. H., Cloud, G. A., & Lopez, R. D. (2008). Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. Journal of Immunology, 180(9), 6044–6053.

    CAS  Google Scholar 

  164. Adams, J. Y., Johnson, M., Sato, M., Berger, F., Gambhir, S. S., Carey, M., et al. (2002). Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nature Medicine, 8(8), 891–897.

    PubMed  CAS  Google Scholar 

  165. Scatena, C. D., Hepner, M. A., Oei, Y. A., Dusich, J. M., Yu, S. F., Purchio, T., et al. (2004). Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer. Prostate, 59(3), 292–303.

    PubMed  CAS  Google Scholar 

  166. Ellwood-Yen, K., Wongvipat, J., & Sawyers, C. (2006). Transgenic mouse model for rapid pharmacodynamic evaluation of antiandrogens. Cancer Research, 66(21), 10513–10516.

    PubMed  CAS  Google Scholar 

  167. Hsieh, C. L., Xie, Z., Liu, Z. Y., Green, J. E., Martin, W. D., Datta, M. W., et al. (2005). A luciferase transgenic mouse model: visualization of prostate development and its androgen responsiveness in live animals. Journal of Molecular Endocrinology, 35(2), 293–304.

    PubMed  CAS  Google Scholar 

  168. Lyons, S. K., Lim, E., Clermont, A. O., Dusich, J., Zhu, L., Campbell, K. D., et al. (2006). Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Research, 66(9), 4701–4707.

    PubMed  CAS  Google Scholar 

  169. Xie, X., Luo, Z., Slawin, K. M., & Spencer, D. M. (2004). The EZC-prostate model: noninvasive prostate imaging in living mice. Molecular Endocrinology, 18(3), 722–732.

    PubMed  CAS  Google Scholar 

  170. Liao, C. P., Zhong, C., Saribekyan, G., Bading, J., Park, R., Conti, P. S., et al. (2007). Mouse models of prostate adenocarcinoma with the capacity to monitor spontaneous carcinogenesis by bioluminescence or fluorescence. Cancer Research, 67(15), 7525–7533.

    PubMed  CAS  Google Scholar 

  171. Xuan, J. W., Bygrave, M., Jiang, H., Valiyeva, F., Dunmore-Buyze, J., Holdsworth, D. W., et al. (2007). Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power Doppler ultrasound. Cancer Research, 67(6), 2830–2839.

    PubMed  CAS  Google Scholar 

  172. Degrassi, A., Russo, M., Scanziani, E., Giusti, A., Ceruti, R., Texido, G., et al. (2007). Magnetic resonance imaging and histopathological characterization of prostate tumors in TRAMP mice as model for pre-clinical trials. Prostate, 67(4), 396–404.

    PubMed  Google Scholar 

  173. Paulus, M. J., Gleason, S. S., Easterly, M. E., & Foltz, C. J. (2001). A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. Lab Animal (NY), 30(3), 36–45.

    CAS  Google Scholar 

  174. Jonkers, J., & Berns, A. (2002). Conditional mouse models of sporadic cancer. Nature Reviews. Cancer, 2(4), 251–265.

    PubMed  CAS  Google Scholar 

  175. Bex, A., Vooijs, M., Horenblas, S., & Berns, A. (2002). Controlling gene expression in the urothelium using transgenic mice with inducible bladder specific Cre-lox recombination. Journal of Urology, 168(6), 2641–2644.

    PubMed  CAS  Google Scholar 

  176. Winter, S. F., Cooper, A. B., & Greenberg, N. M. (2003). Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer and Prostatic Diseases, 6(3), 204–211.

    PubMed  CAS  Google Scholar 

  177. Kirby, T. O., Rivera, A., Rein, D., Wang, M., Ulasov, I., Breidenbach, M., et al. (2004). A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clinical Cancer Research, 10(24), 8697–8703.

    PubMed  CAS  Google Scholar 

  178. Krumdieck, C. L., dos Santos, J. E., & Ho, K. J. (1980). A new instrument for the rapid preparation of tissue slices. Analytical Biochemistry, 104(1), 118–123.

    PubMed  CAS  Google Scholar 

  179. Olinga, P., Hof, I. H., Merema, M. T., Smit, M., de Jager, M. H., Swart, P. J., et al. (2001). The applicability of rat and human liver slices to the study of mechanisms of hepatic drug uptake. Journal of Pharmacological and Toxicological Methods, 45(1), 55–63.

    PubMed  CAS  Google Scholar 

  180. Gabril, M. Y., Onita, T., Ji, P. G., Sakai, H., Chan, F. L., Koropatnick, J., et al. (2002). Prostate targeting: PSP94 gene promoter/enhancer region directed prostate tissue-specific expression in a transgenic mouse prostate cancer model. Gene Therapy, 9(23), 1589–1599.

    PubMed  CAS  Google Scholar 

  181. Zhang, X., Chen, M. W., Ng, A., Ng, P. Y., Lee, C., Rubin, M., et al. (1997). Abnormal prostate development in C3(1)-bcl-2 transgenic mice. Prostate, 32(1), 16–26.

    PubMed  Google Scholar 

  182. Bruckheimer, E. M., Brisbay, S., Johnson, D. J., Gingrich, J. R., Greenberg, N., & McDonnell, T. J. (2000). Bcl-2 accelerates multistep prostate carcinogenesis in vivo. Oncogene, 19(46), 5251–5258.

    PubMed  CAS  Google Scholar 

  183. Wang, J., Eltoum, I. E., & Lamartiniere, C. A. (2007). Genistein chemoprevention of prostate cancer in TRAMP mice. Journal of Carcinogenesis, 6, 3.

    PubMed  Google Scholar 

  184. Mentor-Marcel, R., Lamartiniere, C. A., Eltoum, I. E., Greenberg, N. M., & Elgavish, A. (2001). Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Research, 61(18), 6777–6782.

    PubMed  CAS  Google Scholar 

  185. Harper, C. E., Patel, B. B., Wang, J., Arabshahi, A., Eltoum, I. A., & Lamartiniere, C. A. (2007). Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis, 28(9), 1946–1953.

    PubMed  CAS  Google Scholar 

  186. Kelavkar, U. P., Glasgow, W., Olson, S. J., Foster, B. A., & Shappell, S. B. (2004). Overexpression of 12/15-lipoxygenase, an ortholog of human 15-lipoxygenase-1, in the prostate tumors of TRAMP mice. Neoplasia, 6(6), 821–830.

    PubMed  CAS  Google Scholar 

  187. Barve, A., Khor, T. O., Hao, X., Keum, Y. S., Yang, C. S., Reddy, B., et al. (2008). Murine prostate cancer inhibition by dietary phytochemicals–curcumin and phenyethylisothiocyanate. Pharmaceutical Research, 25(9), 2181–2189.

    PubMed  CAS  Google Scholar 

  188. Cha, T. L., Qiu, L., Chen, C. T., Wen, Y., & Hung, M. C. (2005). Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Research, 65(6), 2287–2295.

    PubMed  CAS  Google Scholar 

  189. Raghow, S., Hooshdaran, M. Z., Katiyar, S., & Steiner, M. S. (2002). Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Research, 62(5), 1370–1376.

    PubMed  CAS  Google Scholar 

  190. Sargeant, A. M., Klein, R. D., Rengel, R. C., Clinton, S. K., Kulp, S. K., Kashida, Y., et al. (2007). Chemopreventive and bioenergetic signaling effects of PDK1/Akt pathway inhibition in a transgenic mouse model of prostate cancer. Toxicologic Pathology, 35(4), 549–561.

    PubMed  CAS  Google Scholar 

  191. Tehranian, A., Morris, D. W., Min, B. H., Bird, D. J., Cardiff, R. D., & Barry, P. A. (1996). Neoplastic transformation of prostatic and urogenital epithelium by the polyoma virus middle T gene. American Journal of Pathology, 149(4), 1177–1191.

    PubMed  CAS  Google Scholar 

  192. Hennighausen, L., McKnight, R., Burdon, T., Baik, M., Wall, R. J., & Smith, G. H. (1994). Whey acidic protein extrinsically expressed from the mouse mammary tumor virus long terminal repeat results in hyperplasia of the coagulation gland epithelium and impaired mammary development. Cell Growth and Differentiation, 5(6), 607–613.

    PubMed  CAS  Google Scholar 

  193. Klezovitch, O., Chevillet, J., Mirosevich, J., Roberts, R. L., Matusik, R. J., & Vasioukhin, V. (2004). Hepsin promotes prostate cancer progression and metastasis. Cancer Cell, 6(2), 185–195.

    PubMed  CAS  Google Scholar 

  194. Backman, S. A., Ghazarian, D., So, K., Sanchez, O., Wagner, K. U., Hennighausen, L., et al. (2004). Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proceedings of the National Academy of Sciences of the United States of America, 101(6), 1725–1730.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Sydney Foundation of Medical Research and a project grant from NH&MRC (510238), Australia.

Disclosure statement

No author has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparajita Khatri.

Additional information

Postscript

Although we have tried our best to include major studies, we apologize to all those researchers whose work could not be incorporated into this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeet, V., Russell, P.J. & Khatri, A. Modeling prostate cancer: a perspective on transgenic mouse models. Cancer Metastasis Rev 29, 123–142 (2010). https://doi.org/10.1007/s10555-010-9212-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9212-9

Keywords

Navigation