Skip to main content

Advertisement

Log in

The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Etexilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice

Dabigatran etexilate and atherosclerosis

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Dabigatran etexilate (DE) constitutes a novel, direct thrombin inhibitor. Regarding the association of thrombin with atherogenesis, we assessed the effects of DE on the development and stability of atherosclerotic lesions in apolipoprotein-E deficient (ApoE−/−) mice.

Materials-methods

Fifty male ApoE−/− mice were randomized to receive western-type diet either supplemented with DE 7.5 mg DE/g chow) (DE-group, n = 25) or matching placebo as control (CO-group, n = 25) for 12 weeks. After this period, all mice underwent carotid artery injury with ferric chloride and the time to thrombotic total occlusion (TTO) was measured. Then, mice were euthanatized and each aortic arch was analyzed for the mean plaque area, the content of macrophages, elastin, collagen, nuclear factor kappaB (NFκB), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-9 (MMP-9) and its inhibitor (TIMP-1).

Results

DE-group showed significantly longer TTO compared to CO-group (8.9 ± 2.3 min vs 3.5 ± 1.1 min, p < 0.001) and the mean plaque area was smaller in DE-group than CO-group (441.00 ± 160.01 × 103 μm2 vs 132.12 ± 32.17 × 103 μm2, p < 0.001). Atherosclerotic lesions derived from DE-treated mice showed increased collagen (p = 0.043) and elastin (p = 0.031) content, thicker fibrous caps (p < 0.001) and reduced number of internal elastic lamina ruptures per mm of arterial girth (p < 0.001) when compared to CO-group. Notably, DE treatment seemed to promote plaque stability possibly by reducing concentrations of NFκB, VCAM-1, macrophages and MMP-9 and increasing TIMP-1 within atherosclerotic lesions (p < 0.05).

Conclusions

DE attenuates arterial thrombosis, reduces lesion size and may promote plaque stability in ApoE−/− mice. The plaque-stabilizing effects of chronic thrombin inhibition might be the result of the favorable modification of inflammatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambrose JA, Srikanth S. Vulnerable plaques and patients: improving prediction of future coronary events. Am J Med. 2010;123:10–6.

    Article  PubMed  Google Scholar 

  2. Kadoglou NP, Kostomitsopoulos N, Kapelouzou A, Moustardas P, Katsimpoulas M, Giagini A, et al. Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice. J Vasc Res. 2011;48:347–56.

    Article  PubMed  CAS  Google Scholar 

  3. Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost. 2009;102:248–57.

    PubMed  CAS  Google Scholar 

  4. Hamilton JR, Cocks TM. Heterogeneous mechanisms of endothelium-dependent relaxation for thrombin and peptide activators of protease-activated receptor-1 in porcine isolated coronary artery. Br J Pharmacol. 2000;130:181–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hirano K. The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2007;27:27–36.

    Article  PubMed  CAS  Google Scholar 

  6. Smyth SS, McEver RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, et al. Platelet colloquium participants. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7:1759–66.

    Article  PubMed  CAS  Google Scholar 

  7. Levi M, van der Poll T. Two-way interactions between inflammation and coagulation. Trends Cardiovasc Med. 2005;15:254–9.

    Article  PubMed  CAS  Google Scholar 

  8. Tracy R. Thrombin, inflammation, and cardiovascular disease. Chest. 2003;124:49S–57.

    Article  PubMed  CAS  Google Scholar 

  9. Wienen W, Stassen JM, Priepke H, Ries UJ, Hauel N. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb Haemost. 2007;98:155–62.

    PubMed  CAS  Google Scholar 

  10. Harenberg J, Marx S, Wehling M, Krejczy M. New anticoagulants - promising and failed developments. Br J Pharmacol. 2012;165:363–72.

    Article  PubMed  CAS  Google Scholar 

  11. Hankey GJ, Eikelboom JW. Dabigatran etexilate: a new oral thrombin inhibitor. Circulation. 2011;123:1436–50.

    Article  PubMed  Google Scholar 

  12. Fuster JJ, Castillo AI, Zaragoza C, Ibáñez B, Andrés V. Animal models of atherosclerosis. Prog Mol Biol Transl Sci. 2012;105:1–23.

    Article  PubMed  CAS  Google Scholar 

  13. Vicente CP, He L, Tollefsen DM. Accelerated atherogenesis and neointima formation in heparin cofactor II deficient mice. Blood. 2007;110:4261–7.

    Article  PubMed  CAS  Google Scholar 

  14. Rotzius P, Thams S, Soehnlein O, Kenne E, Tseng CN, Bjorkstrom NK, et al. Distinct infiltration of neutrophils in lesion shoulders in apoe−/−mice. Am J Pathol. 2010;177:493–500.

    Article  PubMed  CAS  Google Scholar 

  15. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin. 2004;20:419–32.

    Article  PubMed  CAS  Google Scholar 

  16. Pynn M, Schäfer K, Konstantinides S, Halle M. Exercise training reduces neointimal growth and stabilizes vascular lesions developing after injury in apolipoprotein e-deficient mice. Circulation. 2004;109:386–92.

    Article  PubMed  CAS  Google Scholar 

  17. Tracqui P, Broisat A, Toczek J, Mesnier N, Ohayon J, Riou L. Mapping elasticity moduli of atherosclerotic plaque in situ via atomic force microscopy. J Struct Biol. 2011;174:115–23.

    Article  PubMed  Google Scholar 

  18. Bea F, Kreuzer J, Preusch M, Schaab S, Isermann B, Rosenfeld ME, et al. Melagatran reduces advanced atherosclerotic lesion size and may promote plaque stability in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2006;26:2787–92.

    Article  PubMed  CAS  Google Scholar 

  19. Testa L, Bhindi R, Agostoni P, Abbate A, Zoccai GG, van Gaal WJ. The direct thrombin inhibitor ximelagatran/melagatran: a systematic review on clinical applications and an evidence based assessment of risk benefit profile. Expert Opin Drug Saf. 2007;6:397–406.

    Article  PubMed  CAS  Google Scholar 

  20. Ylä-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, et al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology Working Group on atherosclerosis and vascular biology. Thromb Haemost. 2011;106:1–19.

    Article  PubMed  Google Scholar 

  21. Clarke M, Bennett M. The emerging role of vascular smooth muscle cell apoptosis in atherosclerosis and plaque stability. Am J Nephrol. 2006;26:531–5.

    Article  PubMed  Google Scholar 

  22. Olson ES, Whitney MA, Friedman B, Aguilera TA, Crisp JL, Baik FM, et al. In vivo fluorescence imaging of atherosclerotic plaques with activatable cell-penetrating peptides targeting thrombin activity. Integr Biol (Camb). 2012;4:595–605.

    Article  CAS  Google Scholar 

  23. Pou J, Rebollo A, Piera L, Merlos M, Roglans N, Laguna JC, et al. Tissue factor pathway inhibitor 2 is induced by thrombin in human macrophages. Biochim Biophys Acta. 2011;1813:1254–60.

    Article  PubMed  CAS  Google Scholar 

  24. DeGraba TJ. Immunogenetic susceptibility of atherosclerotic stroke: implications on current and future treatment of vascular inflammation. Stroke. 2004;35:2712–9.

    Article  PubMed  CAS  Google Scholar 

  25. Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med. 2007;17:253–8.

    Article  PubMed  CAS  Google Scholar 

  26. Feistritzer C, Wiedermann CJ. Effects of anticoagulant strategies on activation of inflammation and coagulation. Expert Opin Biol Ther. 2007;7:855–70.

    Article  PubMed  CAS  Google Scholar 

  27. Kaur J, Woodman RC, Kubes P. P38 MAPK: critical molecule in thrombin-induced NF-kappa B-dependent leukocyte recruitment. Am J Physiol Heart Circ Physiol. 2003;284:H1095–103.

    PubMed  CAS  Google Scholar 

  28. Jennewein C, Paulus P, Zacharowski K. Linking inflammation and coagulation: novel drug targets to treat organ ischemia. Curr Opin Anaesthesiol. 2011;24:375–80.

    Article  PubMed  Google Scholar 

  29. Graebe M, Pedersen SF, Borgwardt L, Højgaard L, Sillesen H, Kjaer A. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucosepositron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg. 2009;37:714–21.

    Article  PubMed  CAS  Google Scholar 

  30. de Nooijer R, Verkleij CJ, von der Thüsen JH, Jukema JW, van der Wall EE, van Berkel TJ, et al. Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions but not at earlier stages of atherogenesis. Arterioscler Thromb Vasc Biol. 2006;26:340–6.

    Article  PubMed  Google Scholar 

  31. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD. Matrix metalloproteinases and diabetic vascular complications. Angiology. 2005;56:173–89.

    Article  PubMed  Google Scholar 

  32. Holven KB, Halvorsen B, Bjerkeli V, Damås JK, Retterstøl K, Mørkrid L, et al. Impaired inhibitory effect of interleukin-10 on the balance between matrix metalloproteinase-9 and its inhibitor in mononuclear cells from hyperhomocysteinemic subjects. Stroke. 2006;37:1731–6.

    Article  PubMed  CAS  Google Scholar 

  33. Skjøt-Arkil H, Barascuk N, Register T, Karsdal MA. Macrophagemediatedproteolytic remodeling of the extracellular matrix in atherosclerosis results inneoepitopes: a potential new class of biochemical markers. Assay Drug Dev Technol. 2010;8:542–52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed in part by Boehringer Ingelheim. Nikolaos P.E. Kadoglou was awarded a grant by the Greek State Scholarship’s Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos P. E. Kadoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadoglou, N.P.E., Moustardas, P., Katsimpoulas, M. et al. The Beneficial Effects of a Direct Thrombin Inhibitor, Dabigatran Etexilate, on the Development and Stability of Atherosclerotic Lesions in Apolipoprotein E-deficient Mice. Cardiovasc Drugs Ther 26, 367–374 (2012). https://doi.org/10.1007/s10557-012-6411-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6411-3

Key words

Navigation