Skip to main content

Advertisement

Log in

Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Human adipose-derived stem cells (ASC) can be expanded in an undifferentiated state or differentiated along the osteogenic, chondrogenic, adipogenic, myogenic, endothelial and neurogenic lineage. To test their in vivo and in situ regenerative potential, their fate needs to be traced after application in suitable defect models. Non-invasive imaging systems allow for real time tracking of labelled cells in the living animal. We have evaluated a bioluminescence cell tracking approach to visualise ASC labelled with luciferase in the living animal. Two procedures have been tested to efficiently label human stem cells with a reporter gene (luciferase, green fluorescent protein), namely lipofection with LipofectamineTM 2000 and electroporation with a Nucleofector® device. With both lipofection and nucleofection protocols, we have reached transfection efficiencies up to 60%. Reporter gene expression was detectable for 3 weeks in vitro and did not interfere with the phenotype and the stem cell properties of the cells. By means of a highly sensitive CCD camera, we were able to achieve real time imaging of cell fate for at least 20 days after application (intravenous, intramuscular, intraperitoneal, subcutaneous) in nude mice. Moreover, we were able to influence cell mobility by choosing different modes of application such as enclosure in fibrin matrix. The optical imaging system with transient transfection is an elegant cell-tracking concept to follow survival and fate of human stem cells in small animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AP:

Alkaline Phosphatase

ASC:

Adipose-derived stem cells

BSA:

Bovine serum albumin

CCD:

Charge-coupled device

DAPI:

4,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s minimum essential medium

EDTA:

Ethylenediaminetetraacetic acid

EGM-2:

Endothelial growth medium-2

FCS:

Foetal calf serum

FISH:

Fluorescence in situ hybridisation

GFP:

Green fluorescent protein

HEPES:

4-2-Hydroxyethyl-1-piperazineethanesulfonic acid

i.m.:

Intramuscular

i.p.:

Intraperitoneal

i.v.:

Intravenous

MSC:

Mesenchymal stem cells

NOD/SCID:

Non-obese diabetic/severe combined immunodeficiency

PBS:

Phosphate buffered saline

SC:

Stem cells

s.c.:

Subcutaneous

SSC:

Saline, sodium citrate

References

  • Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, Errico-Grigioni A, Ferri E, Baccarani M, Lemoli RM (2006) Nucleofection is an efficient nonviral transfection technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 24:454–461

    Article  PubMed  Google Scholar 

  • Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T (2002) Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195:1549–1563

    Article  PubMed  CAS  Google Scholar 

  • Arnold U, Lindenhayn K, Perka C (2002) In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials 23:2303–2310

    Article  PubMed  CAS  Google Scholar 

  • Biamonti G, Della VG, Talarico D, Cobianchi F, Riva S, Falaschi A (1985) Fate of exogenous recombinant plasmids introduced into mouse and human cells. Nucleic Acids Res 13:5545–5561

    Article  PubMed  CAS  Google Scholar 

  • Blum JS, Temenoff JS, Park H, Jansen JA, Mikos AG, Barry MA (2004) Development and characterization of enhanced green fluorescent protein and luciferase expressing cell line for non-destructive evaluation of tissue engineering constructs. Biomaterials 25:5809–5819

    Article  PubMed  CAS  Google Scholar 

  • Cao F, Lin S, Xie X, Ray P, Patel M, Zhang X, Drukker M, Dylla SJ, Connolly AJ, Chen X, Weissman IL, Gambhir SS, Wu JC (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014

    Article  PubMed  Google Scholar 

  • Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  • Contag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18:593–603

    Article  PubMed  CAS  Google Scholar 

  • Corsi K, Chellat F, Yahia L, Fernandes JC (2003) Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials 24:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Dayoub H, Dumont RJ, Li JZ, Dumont AS, Hankins GR, Kallmes DF, Helm GA (2003) Human mesenchymal stem cells transduced with recombinant bone morphogenetic protein-9 adenovirus promote osteogenesis in rodents. Tissue Eng 9:347–356

    Article  PubMed  CAS  Google Scholar 

  • De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  PubMed  Google Scholar 

  • Doyle TC, Burns SM, Contag CH (2004) In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol 6:303–317

    Article  PubMed  CAS  Google Scholar 

  • Dragoo JL, Lieberman JR, Lee RS, Deugarte DA, Lee Y, Zuk PA, Hedrick MH, Benhaim P (2005) Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  • Feichtinger G, Kloesch B, Wolbank S, Banerjee A, Dopler D, Redl H (2006) Osteocalcin-promoter based assay for the detection of osteogenic differentiation. Presented at the Expertissues workshop cellular aspects of tissue engineering, Vienna, Austria

  • Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22:649–658

    Article  PubMed  CAS  Google Scholar 

  • Gertow K, Wolbank S, Rozell B, Sugars R, Andang M, Parish CL, Imreh MP, Wendel M, Ahrlund-Richter L (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 13:421–435

    Article  PubMed  Google Scholar 

  • Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588

    Article  PubMed  CAS  Google Scholar 

  • Haleem-Smith H, Derfoul A, Okafor C, Tuli R, Olsen D, Hall DJ, Tuan RS (2005) Optimization of high-efficiency transfection of adult human mesenchymal stem cells in vitro. Mol Biotechnol 30:9–20

    Article  PubMed  CAS  Google Scholar 

  • Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK (2002) Efficient transfection method for primary cells. Tissue Eng 8:235–245

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  • Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  • Hsieh SC, Wang FF, Lin CS, Chen YJ, Hung SC, Wang YJ (2006) The inhibition of osteogenesis with human bone marrow mesenchymal stem cells by CdSe/ZnS quantum dot labels. Biomaterials 27:1656–1664

    Article  PubMed  CAS  Google Scholar 

  • In ’t Anker PS, Scherjon SA, Kleijburg-van der KC, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345

    Article  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  • Kim SU (2004) Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 24:159–171

    Article  PubMed  Google Scholar 

  • Kim DE, Schellingerhout D, Ishii K, Shah K, Weissleder R (2004) Imaging of stem cell recruitment to ischemic infarcts in a murine model. Stroke 35:952–957

    Article  PubMed  Google Scholar 

  • Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    Article  PubMed  Google Scholar 

  • Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie CM (2004) Efficient transfection of embryonic and adult stem cells. Stem Cells 22:531–543

    Article  PubMed  Google Scholar 

  • Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  PubMed  Google Scholar 

  • Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther 3:857–866

    Article  PubMed  CAS  Google Scholar 

  • Leo BM, Li X, Balian G, Anderson DG (2004) In vivo bioluminescent imaging of virus-mediated gene transfer and transduced cell transplantation in the intervertebral disc. Spine 29:838–844

    Article  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med (Maywood) 226:507–520

    CAS  Google Scholar 

  • Morizono K, De Ugarte DA, Zhu M, Zuk P, Elbarbary A, Ashjian P, Benhaim P, Chen IS, Hedrick MH (2003) Multilineage cells from adipose tissue as gene delivery vehicles. Hum Gene Ther 14:59–66

    Article  PubMed  CAS  Google Scholar 

  • Niyibizi C, Wang S, Mi Z, Robbins PD (2004) The fate of mesenchymal stem cells transplanted into immunocompetent neonatal mice: implications for skeletal gene therapy via stem cells. Mol Ther 9:955–963

    Article  PubMed  CAS  Google Scholar 

  • Noel D, Gazit D, Bouquet C, Apparailly F, Bony C, Plence P, Millet V, Turgeman G, Perricaudet M, Sany J, Jorgensen C (2004) Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 22:74–85

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, Iwamoto Y, Nakamura M, Miyoshi H, Okano HJ, Contag CH, Toyama Y, Okano H (2005) In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. FASEB J 19:1839–1841

    PubMed  CAS  Google Scholar 

  • Pochampally RR, Horwitz EM, DiGirolamo CM, Stokes DS, Prockop DJ (2005) Correction of a mineralization defect by overexpression of a wild-type cDNA for COL1A1 in marrow stromal cells (MSCs) from a patient with osteogenesis imperfecta: a strategy for rescuing mutations that produce dominant-negative protein defects. Gene Ther 12:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, Doronin S, Zuckerman J, Shlapakova IN, Gao J, Pan Z, Herron AJ, Robinson RB, Brink PR, Rosen MR, Cohen IS (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  PubMed  CAS  Google Scholar 

  • Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    Article  PubMed  CAS  Google Scholar 

  • Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999) Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA 96:12044–12049

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya H, Kitoh H, Sugiura F, Ishiguro N (2003) Chondrogenesis enhanced by overexpression of sox9 gene in mouse bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 301:338–343

    Article  PubMed  CAS  Google Scholar 

  • VandenDriessche T, Vanslembrouck V, Goovaerts I, Zwinnen H, Vanderhaeghen ML, Collen D, Chuah MK (1999) Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice. Proc Natl Acad Sci USA 96:10379–10384

    Article  PubMed  CAS  Google Scholar 

  • Vanderbyl S, MacDonald GN, Sidhu S, Gung L, Telenius A, Perez C, Perkins E (2004) Transfer and stable transgene expression of a mammalian artificial chromosome into bone marrow-derived human mesenchymal stem cells. Stem Cells 22:324–333

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, Kohn DB, Nelson MD, Crooks GM (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:3478–3482

    Article  PubMed  CAS  Google Scholar 

  • Wang QW, Chen ZL, Piao YJ (2005) Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 100:418–422

    Article  PubMed  CAS  Google Scholar 

  • Weber M, Steinert A, Jork A, Dimmler A, Thurmer F, Schutze N, Hendrich C, Zimmerman U (2002) Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials 23:2003–2013

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  Google Scholar 

  • Xia Z, Ye H, Locklin RM, Ferguson DJ, Cui Z, Triffitt JT (2005) Efficient characterisation of human cell-bioceramic interactions in vitro and in vivo by using enhanced GFP-labelled mesenchymal stem cells. Biomaterials 26:5790–5800

    Article  PubMed  CAS  Google Scholar 

  • Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    Article  PubMed  CAS  Google Scholar 

  • Zhang PX, He XJ, Zhao FQ, Du C, Fu ZG, Zhang DY, Zhang HB, Jiang BG (2005) EGFP expression controlled by GFAP promoter in mesenchymal cells: an efficient tool for glial lineage selection and transplantation. Artif Cells Blood Substit Immobil Biotechnol 33:307–317

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  • Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European STREP Project HIPPOCRATES (NMP3-CT-2003-505758) and the Lorenz Boehler Fonds and was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283). We wish to thank Mika Brejnikow, Daniela Dopler, Kerstin Schauer and Tatjana Sindelar for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Wolbank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolbank, S., Peterbauer, A., Wassermann, E. et al. Labelling of human adipose-derived stem cells for non-invasive in vivo cell tracking. Cell Tissue Banking 8, 163–177 (2007). https://doi.org/10.1007/s10561-006-9027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-006-9027-7

Keywords

Navigation