Skip to main content

Advertisement

Log in

Adriamycin-induced oxidative mitochondrial cardiotoxicity

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

The anticancer agent Adriamycin (ADR) has long been recognized to induce a dose-limiting cardiotoxicity. Numerous studies have attempted to characterize and elucidate the mechanism(s) behind its cardiotoxic effect. Despite a wealth of data covering a wide-range of effects mediated by the drug, the definitive mechanism remains a matter of debate. However, there is consensus that this toxicity is related to the induction of reactive oxygen species (ROS). Induction of ROS in the heart by ADR occurs via redox cycling of the drug at complex I of the electron transport chain. Many studies support the theory that mitochondria are a primary target of ADR-induced oxidative stress, both acutely and long-term. This review focuses on the effects of ADR redox cycling on the mitochondrion, which support the hypothesis that these organelles are indeed a major factor in ADR cardiotoxicity. This review has been constructed with particular emphasis on studies utilizing cardiac models with clinically relevant doses or concentrations of ADR in the hope of advancing our understanding of the mechanisms of ADR toxicity. This compilation of current data may reveal valuable insights for the development of therapeutic strategies better tailored to minimizing the dose-limiting effect of ADR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADR:

Adriamycin

ROS:

reactive oxygen species

ETC:

electron transport chain

CHF:

congestive heart failure

ER:

endoplasmic reticulum

MPT:

mitochondrial permeability transition

ANT:

adenine nucleotide transporter

8OHdG:

8-hydroxydeoxyguanosine

References

  • al-Shabanah OA, Badary OA, Nagi MN, et al. Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. J Exp Clin Cancer Res. 1998;17:193–8.

    CAS  PubMed  Google Scholar 

  • Anderson AB, Arriaga EA. Subcellular metabolite profiles of the parent CCRF-CEM and the derived CEM/C2 cell lines after treatment with doxorubicin. J Chromatogr B Anal Technol Biomed Life Sci. 2004;808:295–302.

    CAS  Google Scholar 

  • Arcamone F, Franceschi G, Penco S, Selva A. Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic. Tetrahedron Lett. 1969;13:1007–10.

    Article  CAS  PubMed  Google Scholar 

  • Ardail D, Privat JP, Egret-Charlier M, et al. Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem. 1990;265:18797–802.

    CAS  PubMed  Google Scholar 

  • Arola OJ, Saraste A, Pulkki K, et al. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res. 2000;60:1789–92.

    CAS  PubMed  Google Scholar 

  • Bachmann E, Weber E, Zbinden G. Effects of seven anthracycline antibiotics on electrocardiogram and mitochondrial function of rat hearts. Agents Actions. 1975;5:383–93.

    Article  CAS  PubMed  Google Scholar 

  • Bachur NR, Gordon SL, Gee MV. Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol. 1977;13:901–10.

    CAS  PubMed  Google Scholar 

  • Bachur NR, Gee MV, Friedman RD. Nuclear catalyzed antibiotic free radical formation. Cancer Res. 1982;42:1078–81.

    CAS  PubMed  Google Scholar 

  • Barth E, Stammler G, Speiser B, Schaper J. Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol. 1992;24:669–81.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi C, Bagnato A, Paggi MG, Floridi A. Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria. Exp Mol Pathol. 1987;46:123–35.

    Article  CAS  PubMed  Google Scholar 

  • Cribb AE, Peyrou M, Muruganandan S, Schneider L. The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev. 2005;37:405–42.

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261:3060–7.

    CAS  PubMed  Google Scholar 

  • Davies KJ, Doroshow JH, Hochstein P. Mitochondrial NADH dehydrogenase-catalyzed oxygen radical production by adriamycin, and the relative inactivity of 5-iminodaunorubicin. FEBS Lett. 1983;153:227–30.

    Article  CAS  PubMed  Google Scholar 

  • Doroshow JH. Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Res. 1983a;43:4543–51.

    CAS  Google Scholar 

  • Doroshow JH. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res. 1983b;43:460–72.

    CAS  Google Scholar 

  • Doroshow JH, Davies KJ. Comparative cardiac oxygen radical metabolism by anthracycline antibiotics, mitoxantrone, bisantrene, 4′-(9-acridinylamino)-methanesulfon-m-anisidide, and neocarzinostatin. Biochem Pharmacol. 1983;32:2935–9.

    Article  CAS  PubMed  Google Scholar 

  • Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261:3068–74.

    CAS  PubMed  Google Scholar 

  • Ferrero ME, Ferrero E, Gaja G, Bernelli-Zazzera A. Adriamycin: energy metabolism and mitochondrial oxidations in the heart of treated rabbits. Biochem Pharmacol. 1976;25:125–30.

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol. 1999;57:727–41.

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh E, Chatelain P, Caspers J, Ruysschaert JM. Evidence of a complex between adriamycin derivatives and cardiolipin: possible role in cardiotoxicity. Biochem Pharmacol. 1980;29:3003–10.

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM. Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem. 1990;35:247–57.

    Article  CAS  PubMed  Google Scholar 

  • Gosalvez M, Blanco M, Hunter J, Miko M, Chance B. Effects of anticancer agents on the respiration of isolated mitochondria and tumor cells. Eur J Cancer. 1974;10:567–74.

    CAS  PubMed  Google Scholar 

  • Green PS, Leeuwenburgh C. Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim Biophys Acta. 2002;1588:94–101.

    CAS  PubMed  Google Scholar 

  • Halestrap AP. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans. 2006;34:232–7.

    Article  CAS  PubMed  Google Scholar 

  • Hrelia S, Fiorentini D, Maraldi T, et al. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta. 2002;1567:150–6.

    Article  CAS  PubMed  Google Scholar 

  • Ji LL, Mitchell EW. Effects of adriamycin on heart mitochondrial function in rested and exercised rats. Biochem Pharmacol. 1994;47:877–85.

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Chen Y, Epstein PN. Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem. 1996;271:12610–6.

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Chen Y, Yu A, Voss-McCowan M, Epstein PN. Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J Clin Invest. 1997;100:1501–6.

    Article  CAS  PubMed  Google Scholar 

  • Kiyomiya K, Matsuo S, Kurebe M. Differences in intracellular sites of action of adriamycin in neoplastic and normal differentiated cells. Cancer Chemother Pharmacol. 2001;47:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA. Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation. 2003;108:2423–9.

    Article  CAS  PubMed  Google Scholar 

  • Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Baracca A, Fato R, Genova ML, Solaini G. New insights into structure and function of mitochondria and their role in aging and disease. Antioxid Redox Signal. 2006;8:417–37.

    Article  CAS  PubMed  Google Scholar 

  • Lipshultz SE, Colan SD, Gelber RD, et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  CAS  PubMed  Google Scholar 

  • Marcillat O, Zhang Y, Davies KJ. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J. 1989;259:181–9.

    CAS  PubMed  Google Scholar 

  • Mettler FP, Young DM, Ward JM. Adriamycin-induced cardiotoxicity (cardiomyopathy and congestive heart failure) in rats. Cancer Res. 1977;37:2705–13.

    CAS  PubMed  Google Scholar 

  • Mross K, Maessen P, van der Vijgh WJ, et al. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J Clin Oncol. 1988;6:517–26.

    CAS  PubMed  Google Scholar 

  • Nicolay K, Fok JJ, Voorhout W, Post JA, de Kruijff B. Cytofluorescence detection of adriamycin-mitochondria interactions in isolated, perfused rat heart. Biochim Biophys Acta. 1986;887:35–41.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PJ, Santos MS, Wallace KB. Doxorubicin-induced thiol-dependent alteration of cardiac mitochondrial permeability transition and respiration. Biochemistry (Mosc). 2006;71:194–9.

    Article  CAS  Google Scholar 

  • Palmeira CM, Serrano J, Kuehl DW, Wallace KB. Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta. 1997;1321:101–6.

    Article  CAS  PubMed  Google Scholar 

  • Pan SS, Bachur NR. Xanthine oxidase catalyzed reductive cleavage of anthracycline antibiotics and free radical formation. Mol Pharmacol. 1980;17:95–9.

    CAS  PubMed  Google Scholar 

  • Porta EA, Joun NS, Matsumura L, Nakasone B, Sablan H. Acute adriamycin cardiotoxicity in rats. Res Commun Chem Pathol Pharmacol. 1983;41:125–37.

    CAS  PubMed  Google Scholar 

  • Praet M, Ruysschaert JM. In-vivo and in-vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives. Biochim Biophys Acta. 1993;1149:79–85.

    Article  CAS  PubMed  Google Scholar 

  • Robert J, Vrignaud P, Nguyen-Ngoc T, et al. Comparative pharmacokinetics and metabolism of doxorubicin and epirubicin in patients with metastatic breast cancer. Cancer Treat Rep. 1985;69:633–40.

    CAS  PubMed  Google Scholar 

  • Salvatorelli E, Guarnieri S, Menna P, et al. Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem. 2006;281:10990–1001.

    Article  CAS  PubMed  Google Scholar 

  • Santos DL, Moreno AJ, Leino RL, Froberg MK, Wallace KB. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185:218–27.

    Article  CAS  PubMed  Google Scholar 

  • Schlame M, Rua D, Greenberg ML. The biosynthesis and functional role of cardiolipin. Prog Lipid Res. 2000;39:257–88.

    Article  CAS  PubMed  Google Scholar 

  • Serrano J, Palmeira CM, Kuehl DW, Wallace KB. Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochim Biophys Acta. 1999;1411:201–5.

    Article  CAS  PubMed  Google Scholar 

  • Shinozawa S, Fukuda T, Araki Y, Oda T. Effect of dextran sulfate on the survival time and mitochondrial function of adriamycin (doxorubicin)-treated mice. Toxicol Appl Pharmacol. 1985;79:353–7.

    Article  CAS  PubMed  Google Scholar 

  • Solem LE, Henry TR, Wallace KB. Disruption of mitochondrial calcium homeostasis following chronic doxorubicin administration. Toxicol Appl Pharmacol. 1994;129:214–22.

    Article  CAS  PubMed  Google Scholar 

  • Solem LE, Heller LJ, Wallace KB. Dose-dependent increase in sensitivity to calcium-induced mitochondrial dysfunction and cardiomyocyte cell injury by doxorubicin. J Mol Cell Cardiol. 1996;28:1023–32.

    Article  CAS  PubMed  Google Scholar 

  • Sorensen K, Levitt G, Bull C, Chessells J, Sullivan I. Anthracycline dose in childhood acute lymphoblastic leukemia: issues of early survival versus late cardiotoxicity. J Clin Oncol. 1997;15:61–8.

    CAS  PubMed  Google Scholar 

  • Spallarossa P, Garibaldi S, Altieri P, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37:837–46.

    Article  CAS  PubMed  Google Scholar 

  • Stewart DJ, Grewaal D, Green RM, et al. Concentrations of doxorubicin and its metabolites in human autopsy heart and other tissues. Anticancer Res. 1993;13:1945–52.

    CAS  PubMed  Google Scholar 

  • Sun X, Zhou Z, Kang YJ. Attenuation of doxorubicin chronic toxicity in metallothionein-overexpressing transgenic mouse heart. Cancer Res. 2001;61:3382–7.

    CAS  PubMed  Google Scholar 

  • Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103–23.

    Article  CAS  PubMed  Google Scholar 

  • Tokarska-Schlattner M, Zaugg M, da Silva R, et al. Acute toxicity of doxorubicin on isolated perfused heart: response of kinases regulating energy supply. Am J Physiol Heart Circ Physiol. 2005;289:H37–47.

    Article  CAS  PubMed  Google Scholar 

  • Tsang WP, Chau SP, Kong SK, Fung KP, Kwok TT. Reactive oxygen species mediate doxorubicin induced p53-independent apoptosis. Life Sci. 2003;73:2047–58.

    Article  CAS  PubMed  Google Scholar 

  • van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH. Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer. 1999;79:108–13.

    Article  CAS  PubMed  Google Scholar 

  • Van Houten B, Woshner V, Santos JH. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst). 2006;5:145–52.

    Article  CAS  Google Scholar 

  • Von Hoff DD, Layard MW, Basa P, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91:710–7.

    CAS  PubMed  Google Scholar 

  • Wakasugi S, Fischman AJ, Babich JW, et al. Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy. J Nucl Med. 1993;34:1529–35.

    CAS  PubMed  Google Scholar 

  • Wang GW, Klein JB, Kang YJ. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther. 2001;298:461–8.

    CAS  PubMed  Google Scholar 

  • Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol. 2001;44:1–11.

    CAS  PubMed  Google Scholar 

  • Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111:1497–504.

    Article  CAS  PubMed  Google Scholar 

  • Yee SB, Pritsos CA. Comparison of oxygen radical generation from the reductive activation of doxorubicin, streptonigrin, and menadione by xanthine oxidase and xanthine dehydrogenase. Arch Biochem Biophys. 1997;347:235–41.

    Article  CAS  PubMed  Google Scholar 

  • Zagotto G, Gatto B, Moro S, Sissi C, Palumbo M. Anthracyclines: recent developments in their separation and quantitation. J Chromatogr B Biomed Sci Appl. 2001;764:161–71.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Clark JR Jr., Herman EH, Ferrans VJ. Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. J Mol Cell Cardiol. 1996;28:1931–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Heller LJ, Wallace KB. Interference with calcium-dependent mitochondrial bioenergetics in cardiac myocytes isolated from doxorubicin-treated rats. Toxicol Appl Pharmacol. 2001a;175:60–7.

    Article  CAS  Google Scholar 

  • Zhou S, Palmeira CM, Wallace KB. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett. 2001b;121:151–7.

    Article  CAS  Google Scholar 

  • Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res. 2001c;61:771–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthiaume, J.M., Wallace, K.B. Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23, 15–25 (2007). https://doi.org/10.1007/s10565-006-0140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0140-y

Keywords

Navigation