Skip to main content
Log in

Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We describe the construction of a model complex of the cellobiohydrolase I (CBH I) cellulase from Trichoderma reesei bound to a cellulose microfibril in an aqueous environment for use in molecular dynamics (MD) simulations. Preliminary characterization from the initial phases of an MD simulation of this complex is also described. The linker sequence between the two globular domains was found to be quite flexible, and the oligosaccharides bound to this linker were found to prefer to be splayed like the spokes in a wheel due to their hydration requirements. The overall conformations of the two globular domains remained stable in the simulations, although both underwent changes in their orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barr BK, Hsieh Y-L, Ganem B, Wilson DB (1996) Identification of two functionally different classes of exocellulases. Biochemistry 35:586–592

    Article  CAS  Google Scholar 

  • Brady JW (1993) Molecular dynamics simulations of carbohydrates. Forefronts/Cornell Theory Center 9:7

    Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Coughlan MP, Hazlewood GP (1993) Hemicellulose and hemicellulases. Portland, London

    Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles JKC, Teeri TT, Jones TA (1994) The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524–528

    Article  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma Reesei. J Mol Biol 275:309–325

    Article  CAS  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  Google Scholar 

  • Durell SR, Brooks BR, Ben-Naim A (1994) Solvent-induced forces between two hydrophilic groups. J Phys Chem 98:2198–2202

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol J-F, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4:209–220

    Article  CAS  Google Scholar 

  • Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Modified glycosylation of cellobiohydrolase I from a high cellulose-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119–127

    Article  CAS  Google Scholar 

  • Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50

    Article  Google Scholar 

  • Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulosic biomass. Curr Opin Biotechnol 10:358–364

    Article  CAS  Google Scholar 

  • Himmel ME, DIng S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hoffrén A-M, Teeri TT, Teleman O (1995) Molecular dynamics simulation of fungal cellulose-binding domains: differences in molecular rigidity but a preserved cellulose binding surface. Protein Eng 8:443–450

    Article  Google Scholar 

  • Hui JPM, Lanthier P, White TC, McHugh SG, Yaguchi M, Roy R, Thibault P (2001) Characterization of cellobiohydrolase I (Cel7A) glycoforms from extracts of Trichoderma reesei using capillary isoelectric focusing and electrospray mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 752:349–368

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD-visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160

    Article  CAS  Google Scholar 

  • Kraulis PJ, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J, Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:7241–7257

    Article  CAS  Google Scholar 

  • Kuga S, Brown RM (1991) Physical structure of cellulose microfibrils: implications for biogenesis. In: Haigler CH, Weiner PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 125–142

    Google Scholar 

  • Kuttel M, Brady JW, Naidoo KJ (2002) Carbohydrate solution simulations: producing a force field with experimentally consistent primary alcohol rotational frequencies and populations. J Comput Chem 23:1236–1243

    Article  CAS  Google Scholar 

  • Kuutti L, Laaksonen L, Teeri TT (1991) Interaction studies of the tail domain of cellobiohydrolase I and crystalline cellulose using molecular modelling. J Chimie Physique et de Physico-Chimie Biologique 88:2663–2667

    CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  • Leach AR (1996) Molecular modelling: principles and applications. Longman, Harlow

    Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  Google Scholar 

  • Liu Q, Brady JW (1996) Anisotropic solvent structuring in aqueous sugar solutions. J Am Chem Soc 118:12276–12286

    Article  CAS  Google Scholar 

  • Liu Q, Schmidt RK, Teo B, Karplus PA, Brady JW (1997) Molecular dynamics studies of the hydration of α,α-trehalose. J Am Chem Soc 119:7851–7862

    Article  CAS  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Nevalainen H, Harrison M, Jardine D, Zachara NE, Paloheimo M, Suominen P, Gooley AA, Packer NH (1997) Glycosylation of cellobiohydrolase I from Trichoderma reesei. In: TRICEL 97 conference: carbohydrates from Trichoderma reesei and other microorganisms. The Royal Society of Chemistry, Cambridge, UK; Ghent, Belgium

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Nimlos MR, Matthews JF, Crowley MF, Walker RC, Chukkapalli G, Brady JW, Adney WS, Cleary JM, Zhong L, Himmel ME (2007) Molecular modeling suggests induced fit of family I carbohydrate binding modules with a broken chain cellulose surface. Protein Eng Des Sel 20(4):179–187

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Palma R, Zuccato P, Himmel ME, Liang G, Brady JW (2000) Molecular mechanics studies of cellulases. In: Himmel ME (eds) Glycosyl hydrolases in biomass conversion. American Chemical Society, Washington, pp 112–130

    Chapter  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CAWJ, Frederick J, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Receveur V, Czjzek M, Schülein M, Panine P, Henrissat B (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277:40887–40892

    Article  CAS  Google Scholar 

  • Schmidt RK, Karplus M, Brady JW (1996) The anomeric equilibrium in D-xylose: free energy and the role of solvent structuring. J Am Chem Soc 118:541–546

    Article  CAS  Google Scholar 

  • Sinnott ML (1990) Catalytic mechanisms of enzymatic glycosyl transfer. Chem Rev 90:1171–1202

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry. Academic Press, San Diego

    Google Scholar 

  • Ståhlberg J, Divne C, Koivula A, Piens K, Claeyssens M, Teeri T, Jones T (1996) Activity studies and crystal structures of catalytically deficient mutants of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 264:337–349

    Article  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kutz. Planta 166:161–168

    Article  Google Scholar 

  • Tarchevsky IA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. TIBTECH 15:160–167

    Article  Google Scholar 

  • van Gunsteren WF, Berendsen HJC (1977) Algorithms for macromolecular dynamics and constraint dynamics. Mol Phys 34:1311–1327

    Article  Google Scholar 

  • von Ossowski I, Eaton JT, Czjzek M, Perkins SJ, Frandsen TP, Schülein M, Panine P, Henrissat B, Receveur-Brechot V (2005) Protein disorder: conformational distribution of the flexible linker in a chimeric double cellulase. Biophys J 88:2823–2832

    Article  Google Scholar 

  • Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules 37:8548–8555

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by subcontract XCO-4-33099-01 from the National Renewable Energy Laboratory funded by the U.S. DOE Office of the Biomass Program. The authors would like to thank the San Diego Supercomputer Center for providing the necessary computational resources and for their continued support of this project through their Strategic Applications Collaboration program. The authors also thank R.H. Atalla, J. Sugiyama WS, Adney, and D.B. Wilson, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Brady.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 7.94 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, L., Matthews, J.F., Crowley, M.F. et al. Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15, 261–273 (2008). https://doi.org/10.1007/s10570-007-9186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9186-0

Keywords

Navigation