Skip to main content
Log in

Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We report a new method for the direct labeling and visualization of crystalline cellulose using quantum dots (QDs) directed by carbohydrate-binding modules (CBMs). Two type-I (surface binding) CBMs belonging to families 2 and 3a were cloned and expressed with dual histidine tags at the N- and C-termini. Semiconductor (CdSe)ZnS QDs were used to label these CBMs following their binding to Valonia cellulose crystals. Using this approach, we demonstrated that QDs are linearly arrayed on cellulose, which implies that these CBMs specifically bind to a planar face of cellulose. Direct imaging has further shown that different sizes (colors) of QDs can be used to label CBMs bound to cellulose. Furthermore, the binding density of QDs arrayed on cellulose was modified predictably by selecting from various combinations of CBMs and QDs of known dimensions. This approach should be useful for labeling and imaging cellulose-containing materials precisely at the molecular scale, thereby supporting studies of the molecular mechanisms of lignocellulose conversion for biofuels production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai X, Xu Q, Jones M, Song Q, Ding SY, Ellingson RJ et al (2007) Photophysics of (CdSe) ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochem Photobiol Sci 6:1027–1033. doi:10.1039/b706471c

    Article  CAS  Google Scholar 

  • Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. doi:10.1146/annurev.micro.57.030502.091022

    Article  CAS  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    Article  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. doi:10.1042/BJ20040892

    Article  CAS  Google Scholar 

  • Chanzy H, Henrissat B, Vuong R, Revol JF (1986) Structural-changes of cellulose crystals during the reversible transformation cellulose-I reversible cellulose-Iii in Valonia. Holzforschung 40:25–30

    CAS  Google Scholar 

  • Creagh AL, Ong E, Jervis E, Kilburn DG, Haynes CA (1996) Binding of the cellulose-binding domain of exoglucanase cex from Cellulomonas fimi to insoluble microcrystalline cellulose is entropically driven. Proc Natl Acad Sci USA 93:12229–12234. doi:10.1073/pnas.93.22.12229

    Article  CAS  Google Scholar 

  • Ding S-Y, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606. doi:10.1021/jf051851z

    Article  CAS  Google Scholar 

  • Ding SY, Adney WS, Vinzant TB, Decker SR, Baker JO, Thomas SR et al (2003) Glycoside hydrolase gene cluster of Acidothermus cellulolyticus. Acs Sym Ser 855:332–360

    Article  CAS  Google Scholar 

  • Ding SY, Smith S, Xu Q, Sugiyama J, Jones M, Rumbles G et al (2005) Ordered arrays of quantum dots using cellulosomal proteins. Ind Biotechnol 1:198–206. doi:10.1089/ind.2005.1.198

    Article  CAS  Google Scholar 

  • Ding SY, Xu Q, Ali MK, Baker JO, Bayer EA, Barak Y et al (2006) Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques 41:435

    Article  CAS  Google Scholar 

  • Gilkes NR, Kilburn DG, Miller RC, Warren RAJ, Sugiyama J, Chanzy H et al (1993) Visualization of the adsorption of a bacterial endo-beta-1, 4-glucanase and its isolated cellulose-binding domain to crystalline cellulose. Int J Biol Macromol 15:347–351. doi:10.1016/0141-8130(93)90052-N

    Article  CAS  Google Scholar 

  • Goldman ER, Medintz IL, Hayhurst A, Anderson GP, Mauro JM, Iverson BL et al (2005) Self-assembled luminescent CdSe-ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins. Anal Chim Acta 534:63–67. doi:10.1016/j.aca.2004.03.079

    Article  CAS  Google Scholar 

  • Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Bioph Biom 36:171–190. doi:10.1146/annurev.biophys.36.101106.101451

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microfibrils. Polymer (Guildf) 44:1871–1879. doi:10.1016/S0032-3861(02)00861-3

    Article  CAS  Google Scholar 

  • Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489. doi:10.1073/pnas.212651999

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. DOE/GO-102005-2135. ORNL TM-2005(66)

  • Revol JF (1982) On the cross-sectional shape of cellulose crystallities in Valonia ventricosa. Carbohydr Polymers 2:123–134. doi:10.1016/0144-8617(82)90058-3

    Article  CAS  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127. doi:10.1007/BF00816384

    Article  CAS  Google Scholar 

  • Slocik JM, Moore JT, Wright DW (2002) Monoclonal antibody recognition of histidine-rich peptide encapsulated nanoclusters. Nano Lett 2:169–173. doi:10.1021/nl015706 l

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175. doi:10.1021/ma00014a033

    Article  CAS  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y et al (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Simon, B. Lin, and J. Wall (Brookhaven National Laboratory) for STEM studies (supported by USDOE OHER and NIH NIBIB EB 008121-23). This research was supported by U.S. DOE the Office of the Biomass Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-You Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Tucker, M.P., Arenkiel, P. et al. Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose 16, 19–26 (2009). https://doi.org/10.1007/s10570-008-9234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9234-4

Keywords

Navigation