Skip to main content
Log in

The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adney W, Chou Y, Decker S (2003) Heterologous expression of Trichoderma reesei 1, 4-beta-d-glucan cellobiohydrolase (Cel 7A). In: Mansfield S et al (eds) Applications of enzymes to lignocellulosics. American Chemical Society, Washington, pp 403–437

    Chapter  Google Scholar 

  • Baker J, Mitchell D, Grohmann K (1991) Thermal unfolding of Trichoderma reesei CBH I. In: Leatham G, Himmel M et al (eds) Enzymes in biomass conversion. American Chemical Society, Washington, pp 313–330

    Chapter  Google Scholar 

  • Baker J, Adney W, Nieves R et al (1994) A new thermostable endoglucanase, Acidothermus cellulolyticus E1: synergism with Trichoderma reesei CBH1 and comparison to Thermomonospora fusca E5. Appl Biochem Biotechnol 45:245–256. doi:10.1007/BF02941803

    Article  Google Scholar 

  • Bennett N, Ryan J, Biely P (1998) Biochemical and catalytic properties of an endoxylanase purified from culture filtrate of Thermomyces lanuginosus ATCC 46882. Carb Res 306(3):445–455. doi:10.1016/S0008-6215(97)10076-3

    Article  CAS  Google Scholar 

  • Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186(1):80–84. doi:10.1016/0014-5793(85)81343-0

    Article  CAS  Google Scholar 

  • Biely P, MacKenzie C, Puls J et al (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Biotechnology 4(8):731–733. doi:10.1038/nbt0886-731

    Article  CAS  Google Scholar 

  • Donohoe B, Decker S, Tucker M et al (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925. doi:10.1002/bit.21959

    Article  CAS  Google Scholar 

  • Doran-Peterson J, Cook D, Brandon S (2008) Microbial conversion of sugars from plant biomass to lactic acid or ethanol. Plant J 54:582–592. doi:10.1111/j.1365-313X.2008.03480.x

    Article  CAS  Google Scholar 

  • Esteghlalian A, Bilodeau M, Mansfield S et al (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17:1049–1054. doi:10.1021/bp0101177

    Article  CAS  Google Scholar 

  • Gould J (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52. doi:10.1002/bit.260260110

    Article  CAS  Google Scholar 

  • Grohmann K, Mitchell D, Himmel M et al (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20:45–61. doi:10.1007/BF02936472

    Article  Google Scholar 

  • Henrissat B, Driguez H, Viet C et al (1985) Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Biotechnology 3(8):722–726. doi:10.1038/nbt0885-722

    Article  CAS  Google Scholar 

  • Himmel M, Adney W, Fox J et al (1993) Isolation and characterization of 2 forms of Beta-d-Glucosidase from Aspergillus-niger. Appl Biochem Biotechnol 39:213–225. doi:10.1007/BF02918991

    Article  Google Scholar 

  • Himmel M, Ding S, Johnson D et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. doi:10.1126/science.1137016

    Article  CAS  Google Scholar 

  • Ho N, Chen Z, Brainard A (1998) Genetically engineered Sacccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  Google Scholar 

  • Ingram L, Aldrich H, Borges A et al (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866. doi:10.1021/bp9901062

    Article  CAS  Google Scholar 

  • Jeoh T, Ishizawa C, Davis M et al (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122. doi:10.1002/bit.21408

    Article  CAS  Google Scholar 

  • Keranen S, Penttila M (1995) Production of recombinant proteins in the filamentous fungus Trichoderma reesei. Curr Opin Biotechnol 6(5):534–537. doi:10.1016/0958-1669(95)80088-3

    Article  CAS  Google Scholar 

  • Kim S, Holtzapple M (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591. doi:10.1016/j.biortech.2005.03.040

    Article  CAS  Google Scholar 

  • Kohlmann K, Westgate P, Velayudhan A et al (1996) Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system. Adv Space Res 18:251–265. doi:10.1016/0273-1177(95)00815-V

    Article  CAS  Google Scholar 

  • Kong F, Engler C, Soltes E (1992) Effects of cell-wall acetate, xylan backbone, and lignin on enzymatic-hydrolysis of Aspen wood. Appl Biochem Biotechnol 34:23–35. doi:10.1007/BF02920531

    Article  Google Scholar 

  • Mitchell D, Grohmann K, Himmel M et al (1990) Effect of the degree of acetylation on the enzymatic digestion of acetylated xylan. J Wood Chem 10(1):111–121. doi:10.1080/02773819008050230

    Article  CAS  Google Scholar 

  • Mohagheghi A, Dowe N, Schell D et al (2004) Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol Lett 26:321–325. doi:10.1023/B:BILE.0000015451.96737.96

    Article  CAS  Google Scholar 

  • Mosier N, Hendrickson R, Ho N et al (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993. doi:10.1016/j.biortech.2005.01.013

    Article  CAS  Google Scholar 

  • Nummi M, Nikupaavola M, Lappalainen A et al (1983) Cellobiohydrolase from Trichoderma reesei. Biochem J 215(3):677–683

    CAS  Google Scholar 

  • Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylan. Appl Microbiol Biotechnol 28:419–424. doi:10.1007/BF00268207

    Article  CAS  Google Scholar 

  • Poutanen K, Sundberg M, Korte H et al (1990) Deacetylation of xylans by acetyl esterases of Trichoderma-reesei. Appl Microbiol Biotechnol 33:506–510. doi:10.1007/BF00172542

    Article  CAS  Google Scholar 

  • Puls J, Tenkanen M, Korte H et al (1991) Products of hydrolysis of beechwood acetyl-4-o-methylglucuronxylan by a xylanase and an acetyl xylan esterase. Enzyme Microb Technol 13:483–487. doi:10.1016/0141-0229(91)90006-V

    Article  CAS  Google Scholar 

  • Rosgaard L, Pedersen S, Meyer A (2007) Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw. Appl Biochem Biotechnol 143:284–296. doi:10.1007/s12010-007-8001-6

    Article  CAS  Google Scholar 

  • Schell D, Farmer J, Newman M et al (2003) Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor—investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105:69–85. doi:10.1385/ABAB:105:1-3:69

    Article  Google Scholar 

  • Selig M, Viamajala S, Decker S et al (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi:10.1021/bp0702018

    Article  CAS  Google Scholar 

  • Selig M, Knoshaug E, Adney W et al (2008a) Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour Technol 99:4997–5005. doi:10.1016/j.biortech.2007.09.064

    Article  CAS  Google Scholar 

  • Selig M, Knoshaug E, Decker S et al (2008b) Heterologous expression of Aspergillus niger beta-d-Xylosidase (XlnD): characterization on lignocellulosic substrates. Appl Biochem Biotechnol 146:57–68. doi:10.1007/s12010-007-8069-z

    Article  CAS  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, et al (2004) Determination of structural carbohydrates and lignin in biomass. In: DOE (ed) National renewable energy laboratory, Technical Report:NREL/TP-510-42618

  • Sun R, Sun X, Tomkinson J (2004) Hemicelluloses and their derivatives. In: Gatenholm P, Tenkanen M (eds) Hemicelluloses: science and technology. American Chemical Society, Washington, DC, pp 2–22

    Google Scholar 

  • Tenkanen M (1998) Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnol Appl Biochem 27:19–24

    CAS  Google Scholar 

  • Wyman C, Dale B, Elander R et al (2005a) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032. doi:10.1016/j.biortech.2005.01.018

    Article  CAS  Google Scholar 

  • Wyman C, Dale B, Elander R et al (2005b) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966. doi:10.1016/j.biortech.2005.01.010

    Article  CAS  Google Scholar 

  • Yang B, Wyman C (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95. doi:10.1002/bit.20043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy Office of the Biomass Program under contract No. DE-AC36-99GO10337 with the National Renewable Energy Laboratory (NREL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Selig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selig, M.J., Adney, W.S., Himmel, M.E. et al. The impact of cell wall acetylation on corn stover hydrolysis by cellulolytic and xylanolytic enzymes. Cellulose 16, 711–722 (2009). https://doi.org/10.1007/s10570-009-9322-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9322-0

Keywords

Navigation