Skip to main content

Advertisement

Log in

Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. The specifically regulated restrictive permeability barrier to cells and molecules is the most important feature of the blood–brain barrier (BBB). The aim of this review was to summarize permeability data obtained on in vitro BBB models by measurement of transendothelial electrical resistance and by calculation of permeability coefficients for paracellular or transendothelial tracers.

2. Results from primary cultures of cerebral microvascular endothelial cells or immortalized cell lines from bovine, human, porcine, and rodent origin are presented. Effects of coculture with astroglia, neurons, mesenchymal cells, blood cells, and conditioned media, as well as physiological influence of serum components, hormones, growth factors, lipids, and lipoproteins on the barrier function are discussed.

3. BBB permeability results gained on in vitro models of pathological conditions including hypoxia and reoxygenation, neurodegenerative diseases, or bacterial and viral infections have been reviewed. Effects of cytokines, vasoactive mediators, and other pathogenic factors on barrier integrity are also detailed.

4. Pharmacological treatments modulating intracellular cyclic nucleotide or calcium levels, and activity of protein kinases, protein tyrosine phosphatases, phospholipases, cyclooxygenases, or lipoxygenases able to change BBB integrity are outlined. Barrier regulation by drugs involved in the metabolism of nitric oxide and reactive oxygen species, as well as influence of miscellaneous treatments are also listed and evaluated.

5. Though recent advances resulted in development of improved in vitro BBB model systems to investigate disease modeling, drug screening, and testing vectors targeting the brain, there is a need for checking validity of permeability models and cautious interpretation of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N. J. (2000). Inflammatory mediators and modulation of blood–brain barrier permeability. Cell. Mol. Neurobiol. 20:131–147.

    Article  PubMed  CAS  Google Scholar 

  • Abbott, N. J. (2002). Astrocyte-endothelial interactions and the blood–brain barrier permeability. J. Anat. 200:629–638.

    Article  PubMed  CAS  Google Scholar 

  • Abbott N. J. (2005). Dynamics of CNS barriers: Evolution, differentiation and modulation. Cell. Mol. Neurobiol. 25:5–23.

    Article  PubMed  Google Scholar 

  • Abbott, N. J., Hughes, C. C. W., Revest, P. A., and Greenwood, J. (1992). Development and characterisation of a rat brain capillary endothelial culture: Towards an in vitro blood–brain barrier. J. Cell Sci. 103:23–37.

    PubMed  CAS  Google Scholar 

  • Abbruscato, T. J., and Davis, T. P. (1999a). Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J. Pharmacol. Exp. Ther. 289:668–675.

    CAS  Google Scholar 

  • Abbruscato, T. J., and Davis, T. P. (1999b). Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: Influence of astrocyte contact. Brain Res. 842:277–286.

    Article  CAS  Google Scholar 

  • Anda, T., Yamashita, H., Khalid, H., Tsutsumi, K., Fujita, H., Tokunaga, Y., and Shibata, S. (1997). Effect of tumor necrosis factor-alpha on the permeability of bovine brain microvessel endothelial cell monolayers. Neurol. Res. 19:369–376.

    PubMed  CAS  Google Scholar 

  • Annunziata, P., Cioni, C., Santonini, R., and Paccagnini, E. (2002). Substance P antagonist blocks leakage and reduces activation of cytokine-stimulated rat brain endothelium. J. Neuroimmunol. 131:41–49.

    Article  PubMed  CAS  Google Scholar 

  • Annunziata, P., Cioni, C., Toneatto, S., and Paccagnini, E. (1998). HIV-1 gp120 increases the permeability of rat brain endothelium cultures by a mechanism involving substance P. AIDS 12:2377–2385.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, F. E., Shivers, R. R., and Bowman, P. D. (1987). Astrocyte-mediated induction of tight junctions in brain capillary endothelium: An efficient in vitro model. Brain Res. 433:155–159.

    PubMed  CAS  Google Scholar 

  • Audus, K. L., and Borchardt, R. T. (1986a). Characterization of an in vitro blood–brain barrier model system for studying drug transport and metabolism. Pharm. Res. 3:81–87.

    Article  CAS  Google Scholar 

  • Audus, K. L., and Borchardt, R. T. (1986b). Characteristics of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 47:484–488.

    Article  CAS  Google Scholar 

  • Badger, J. L., Stins, M. F., and Kim, K. S. (1999). Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect. Immun. 67:4208–4215.

    PubMed  CAS  Google Scholar 

  • Banks, W. A. (1999). Physiology and pathology of the blood–brain barrier: Implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. J. Neurovirol. 5:538–555.

    Article  PubMed  CAS  Google Scholar 

  • Banks, W. A., and Broadwell, R. D. (1994). Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: Pharmacokinetic and morphological assessments. J. Neurochem. 62:2404–2419.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, H. C., and Bauer, H. (2000). Neural induction of the blood–brain barrier: Still an enigma. Cell. Mol. Neurobiol. 20:13–28.

    Article  PubMed  CAS  Google Scholar 

  • Blasig, I. E., Giese, H., Schroeter, M. L., Sporbert, A., Utepbergenov, D. I., Buchwalow, I. B., Neubert, K., Schönfelder, G., Freyer, D., Schimke, I., Siems, W.-E., Paul, M., Haseloff, R. F., and Blasig, R. (2001). *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood–brain barrier. Microvasc. Res. 62:114–127.

    Article  PubMed  CAS  Google Scholar 

  • Blasig, I. E., Mertsch, K., and Haseloff, R. F. (2002). Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood–brain barrier. Neuropharmacology 43:1006–1014.

    Article  PubMed  CAS  Google Scholar 

  • Borges, N., Shi, F., Azevedo, I., and Audus, K. L. (1994). Changes in brain microvessel endothelial cell monolayer permeability induced by adrenergic drugs. Eur. J. Pharmacol. 269:243–248.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, P. D., Betz, A. L., Wolinsky, J. S., Penny, J. B., Shivers, R. R., and Goldstein, G. W. (1981). Primary cultures of capillary endothelium from rat brain. In Vitro 17:353–362.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, P. D., Ennis, S. R., Rarey, K. E., Betz, A. L., and Goldstein, G. W. (1983). Brain microvessel endothelial cells in tissue culture: A model for study of blood–brain barrier permeability. Ann. Neurol. 14:396–402.

    Article  PubMed  CAS  Google Scholar 

  • Brightman, M. W., and Reese, T. S. (1969). Junctions between intimately apposed cell membranes in the vertebrate brain J. Cell Biol. 40:648–677.

    Article  PubMed  CAS  Google Scholar 

  • Brillault, J., Berezowski, V., Cecchelli, R., and Dehouck, M.-P. (2002). Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J. Neurochem. 83:807–817.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J., Reading, S. J., Jones, S., Fitchett, C. J., Howl, J., Martin, A., Longland, C. L., Michelangeli, F., Dubrova, Y. E., and Brown, C. A. (2000). Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: A comparison with the human bladder cancer derived epithelial cell line T24/83. Lab. Invest. 80:37–45.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. C., Mark, K. S., Egleton, R. D., Huber, J. D., Burroughs, A. R., and Davis, T. P. (2003). Protection against hypoxia-induced increase in blood–brain barrier permeability: Role of tight junction proteins and NF κB. J. Cell Sci. 116:693–700.

    Article  PubMed  CAS  Google Scholar 

  • Brückener, K. E., el Bayâ, A., Galla, H.-J., and Schmidt, M. A. (2003). Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP. J. Cell Sci. 116:1837–1846.

    Article  PubMed  CAS  Google Scholar 

  • Carpentier, M., Descamps, L., Allain, F., Denys, A., Durieux, S., Fenart, L., Kieda, C., Cecchelli, R., and Spik, G. (1999). Receptor-mediated transcytosis of cyclophilin B through the blood–brain barrier. J. Neurochem. 73:260–270.

    Article  PubMed  CAS  Google Scholar 

  • Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buée-Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M.-P. (1999). In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:165–178.

    Article  PubMed  CAS  Google Scholar 

  • Cestelli, A., Catania, C., D’Agostino, S., Di Liegro, I., Licata, L., Schiera, G., Pitarresi, G. L., Savettieri, G., De Caro, V., Giandalia, G., and Giannola, L. I. (2001). Functional feature of a novel model of blood brain barrier: Studies on permeation of test compounds. J. Control. Release 76:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Chopineau, J., Robert, S., Fénart, L., Cecchelli, R., Lagoutte, B., Paitier, S., Dehouck, M.-P., and Domurado, D. (1998). Monoacylation of ribonuclease A enables its transport across an in vitro model of the blood–brain barrier. J. Control. Release 56:231–237.

    Article  PubMed  CAS  Google Scholar 

  • Collard, C. D., Park, K. A., Montalto, M. C., Alapati, S., Buras, J. A., Stahl, G. L., and Colgan, S. P. (2002). Neutrophil-derived glutamate regulates vascular endothelial barrier function. J. Biol. Chem. 277:14801–14811.

    Article  PubMed  CAS  Google Scholar 

  • Crone, C., and Olesen, S. P. (1982). Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Cucullo, L., McAllister, M. S., Kight, K., Krizanac-Bengez, L., Marroni, M., Mayberg, M. R., Stanness, K. A., and Janigro, D. (2002). A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood–brain barrier. Brain Res. 951:243–254.

    Article  PubMed  CAS  Google Scholar 

  • DeBault, L. E., and Cancilla, P. A. (1980). Gamma-glutamyl transpeptidase in isolated brain endothelial cells: Induction by glial cells in vitro. Science 207:653–655.

    Article  PubMed  CAS  Google Scholar 

  • de Boer, A. G., Gaillard, P. J., and Breimer, D. D. (1999). The transference of results between blood–brain barrier cell culture systems. Eur. J. Pharm. Sci. 8:1–4.

    Article  PubMed  CAS  Google Scholar 

  • de Boer, A. G., van der Sandt, I. C. J., and Gaillard, P. J. (2003). The role of drug transporters at the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol. 43:629–656.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, B., Fenart, L., Dehouck, M.-P., Pierce, A., Torpier, G., and Cecchelli, R. (1997). A new function for the LDL receptor: Transcytosis across the blood–brain barrier. J. Cell Biol. 138:877–889.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, M.-P., Cecchelli, R., Green, A. R., Renftel, M., and Lindquist, S. (2002). In vitro blood–brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res. 955:229–235.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck M.-P., Jolliet-Riant, P., Brée, F., Fruchart, J.-C., Cecchelli, R., and Tillement, J.-P. (1992b). Drug transfer across the blood–brain barrier: Correlation between in vitro and in vivo models. J. Neurochem. 58:1790–1797.

    Article  CAS  Google Scholar 

  • Dehouck, M.-P., Méresse, S., Dehouck, B., Fruchart, J. C., and Cecchelli, R. (1992a). In vitro reconstituted blood–brain barrier. J. Control. Release 21:81–92.

    Article  CAS  Google Scholar 

  • Dehouck, M.-P., Méresse, S., Delorme, P., Fruchart, J. C., and Cecchelli, R. (1990). An easier, reproducible, and mass-production method to study the blood–brain barrier in vitro. J. Neurochem. 54:1798–1801.

    Article  PubMed  CAS  Google Scholar 

  • Deli, M. A., Ábrahám, C. S., Niwa, M., and Falus, A. (2003). N,N-diethyl-2-[4-(phenylmethyl)phenoxy]-ethanamide increases the permeability of primary mouse cerebral endothelial cell monolayers. Inflamm. Res. 52:S39–S40.

    Article  PubMed  CAS  Google Scholar 

  • Deli, M. A., Dehouck, M.-P., Ábrahám, C. S., Cecchelli, R., and Joó, F. (1995a). Penetration of small molecular weight substances through cultured bovine brain capillary endothelial cells: The early effects of 3′,5′-cyclic adenosine monophosphate. Exp. Physiol. 80:675–678.

    CAS  Google Scholar 

  • Deli, M. A., Dehouck, M.-P., Cecchelli, R., Ábrahám, C. S., and Joó, F. (1995b). Histamine induces a selective albumin permeation through the blood–brain barrier in vitro. Inflamm. Res. 44:S56–S57.

    Article  CAS  Google Scholar 

  • Deli, M. A., Descamps, L., Dehouck, M.-P., Cecchelli, R., Joó, F., Ábrahám, C. S., and Torpier, G. (1995c). Exposure of tumor necrosis factor α to the luminal membrane induces a delayed increase of permeability and formation of cytoplasmic actin stress fibers in brain capillary endothelial cells cocultured with astrocytes. J. Neurosci. Res. 41:717–726.

    Article  CAS  Google Scholar 

  • Deli, M. A., and Joó, F. (1996). Cultured vascular endothelial cells of the brain. Keio J. Med. 45:183–198.

    PubMed  CAS  Google Scholar 

  • Demeule, M., Poirier, J., Jodoin, J., Bertrand, Y., Desrosiers, R. R., Dagenais, C., Nguyen, T., Lanthier, J., Gabathuler, R., Kennard, M., Jefferies, W. A., Karkan, D., Tsai, S., Fenart, L., Cecchelli, R., and Beliveau, R. (2002). High transcytosis of melanotransferrin (P97) across the blood–brain barrier. J. Neurochem. 83:924–933.

    Article  PubMed  CAS  Google Scholar 

  • Demeuse, P., Kerkhofs, A., Struys-Ponsar, C., Knoops, B., Remacle, C., and van den Bosch de Aguilar, P. (2002). Compartmentalized coculture of rat brain endothelial cells and astrocytes: A syngenic model to study the blood–brain barrier. J. Neurosci. Methods 121:21–31.

    Article  PubMed  Google Scholar 

  • Descamps, L., Cecchelli, R., and Torpier, G. (1997). Effects of tumor necrosis factor on receptor-mediated endocytosis and barrier functions of bovine brain capillary endothelial cell monolayers. J. Neuroimmunol. 74:173–184.

    Article  PubMed  CAS  Google Scholar 

  • Descamps, L., Coisne, C., Dehouck, B., Cecchelli, R., and Torpier, G. (2003). Protective effect of glial cells against lipopolysaccharide-mediated blood–brain barrier injury. Glia 42:46–58.

    Article  PubMed  Google Scholar 

  • de Vries, H. E., Blom-Roosemalen, M. C., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996a). Effect of endotoxin on permeability of bovine cerebral endothelial cell layers in vitro. J. Pharmacol. Exp. Ther. 277:1418–1423.

    CAS  Google Scholar 

  • de Vries, H. E., Blom-Roosemalen, M. C., van Oosten, M., de Boer, A. G., van Berkel, T. J., Breimer, D. D., and Kuiper, J. (1996b). The influence of cytokines on the integrity of the blood–brain barrier in vitro. J. Neuroimmunol. 64:37–43.

    Article  CAS  Google Scholar 

  • Didier, N., Banks W. A., Creminon, C., Dereuddre-Bosquet, N., and Mabondzo, A. (2002). HIV-1-induced production of endothelin-1 in an in vitro model of the human blood–brain barrier. Neuroreport 13:1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Didier, N., Romero, I. A., Creminon, C., Wijkhuisen, A., Grassi, J., and Mabondzo, A. (2003). Secretion of interleukin-1β by astrocytes mediates endothelin-1 and tumour necrosis factor-α effects on human brain microvascular endothelial cell permeability. J. Neurochem. 86:246–254.

    Article  PubMed  CAS  Google Scholar 

  • Dobbie, M. S., Hurst, R. D., Klein, N. J., and Surtees, R. A. H. (1999). Upregulation of intracellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-α in an in vitro model of the blood–brain barrier. Brain Res. 830:330–336.

    Article  PubMed  CAS  Google Scholar 

  • Dohgu, S., Kataoka, Y., Ikesue, H., Naito, M., Tsuruo, T., Oishi, R., and Sawada, Y. (2000). Involvement of glial cells in cyclosporine-increased permeability of brain endothelial cells. Cell. Mol. Neurobiol. 20:781–786.

    Article  PubMed  CAS  Google Scholar 

  • Duport, S., Robert, F., Muller, D., Grau, G., Parisi, L., and Stoppini, L. (1998). An in vitro blood–brain barrier model: Cocultures between endothelial cells and organotypic brain slice cultures. Proc. Natl Acad. Sci. USA 95:1840–1845.

    Article  PubMed  CAS  Google Scholar 

  • Easton, A. S., and Abbott, J. N. (2002). Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood–brain barrier. Brain Res. 953:157–169.

    Article  PubMed  CAS  Google Scholar 

  • Eddy, E. P., Maleef, B. E., Hart, T. K., and Smith, P. L. (1997). In vitro models to predict blood–brain barrier. Adv. Drug Delivery Rev. 23:185–198.

    Article  CAS  Google Scholar 

  • Fenart, L., Buee-Scherrer, V., Descamps, L., Duhem, C., Poullain, M. G., Cecchelli, R., and Dehouck, M. P. (1998). Inhibition of P-glycoprotein: Rapid assessment of its implication in blood–brain barrier integrity and drug transport to the brain by an in vitro model of the blood–brain barrier. Pharm. Res. 15:993–1000.

    Article  PubMed  CAS  Google Scholar 

  • Fenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., and Betbeder, D. (1999). Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood–brain barrier. J. Pharmacol. Exp. Ther. 291:1017–1022.

    PubMed  CAS  Google Scholar 

  • Fiala, M., Looney, D. J., Stins, M., Way, D. D., Zhang, L., Gan, X., Chiappelli, F., Schweitzer, E. S., Shapshak, P., Weinand, M., Graves, M. C., Witte, M., and Kim, K. S. (1997). TNF-alpha opens a paracellular route for HIV-1 invasion across the blood–brain barrier. Mol. Med. 3:553–564.

    PubMed  CAS  Google Scholar 

  • Fillebeen, C., Dehouck, B., Benaïssa, M., Dhennin-Duthille, I., Cecchelli, R., and Pierce, A. (1999a). Tumor necrosis factor-α increases lactoferrin transcytosis through the blood–brain barrier. J. Neurochem. 73:2491–2500.

    Article  CAS  Google Scholar 

  • Fillebeen, C., Descamps, L., Dehouck, M. P., Fenart, L., Benaïssa, M., Spik, G., Cecchelli, R., and Pierce, A. (1999b). Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274:7011–7017.

    Article  CAS  Google Scholar 

  • Fischer, S., Clauss, M., Wiesnet, M., Renz, D., Schaper, W., and Karliczek, G. F. (1999a). Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am. J. Physiol. Cell Physiol. 276:C812–C820.

    CAS  Google Scholar 

  • Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1995). In vitro effects of fentanyl, methohexital, and thiopental brain endothelial permeability. Anesthesiology 82:451–458.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1996). Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res. 707:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (1998). Barbiturates decreases the expression of vascular endothelial growth factor in hypoxic cultures of porcine brain derived microvascular endothelial cells. Mol. Brain Res. 60:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., Renz, D., Schaper, W., and Karliczek, G. F. (2001). In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor. Eur. J. Pharmacol. 411:231–243.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., Renz, D., Wiesnet, M., Schaper, W., and Karliczek, G. F. (1999b). Hypothermia abolishes hypoxia-induced hyperpermeability in brain microvessel endothelial cells. Mol. Brain Res. 74:135–144.

    Article  CAS  Google Scholar 

  • Fischer, S., Wobben, M., Kleinstück, J., Renz, D., and Schaper, W. (2000). Effect of astroglial cells on hypoxia-induced permeability in PBMEC cells. Am. J. Physiol. Cell Physiol. 279:C935–C944.

    PubMed  CAS  Google Scholar 

  • Franke, H., Galla, H.-J., and Beuckmann, C. T. (1999). An improved low-permeability in vitro-model of the blood–brain barrier: Transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res. 818:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, P. J., and de Boer, A. G. (2000). Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur. J. Pharm. Sci. 12:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (1996). Blood–brain barrier permeability and stress: A study on excitotoxic stress and vasogenic edema. Eur. J. Pharm. Sci. 4:S195.

    Article  Google Scholar 

  • Gaillard, P. J., de Boer, A. G., and Breimer, D. D. (2003). Pharmacological investigation on lipopolysaccharide-induced permeability changes in the blood–brain barrier in vitro. Microvasc. Res. 65:24–31.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, P. J., Voorwinden, H., Nielsen, J., Ivanov, A., Atsumi, R., Engman, H., Ringbom, C., de Boer, A. G., and Breimer, D. D. (2001). Establishment and functional characterization of an in vitro model of the blood–brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur. J. Pharm. Sci. 13:215–222.

    Article  Google Scholar 

  • Giese, H., Mertsch, K., and Blasig, I. E. (1995). Effect of MK-801 and U83836 on a porcine brain capillary endothelial cell barrier during hypoxia. Neurosci. Lett. 191:169–172.

    Article  PubMed  CAS  Google Scholar 

  • Giri, R., Shen, Y., Stins, M., Yan, S. D., Schmidt, A. M., Stern, D., Kim, K.-S., Zlokovic, B., and Kalra, V. K. (2000). β-Amyloid-induced migration of monocytes across human brain endothelial cells involve RAGE and PECAM-1. Am. J. Physiol. Cell Physiol. 279:C1772–C1781.

    PubMed  CAS  Google Scholar 

  • Girod, J., Fenart, L., Régina, A., Dehouck, M.-P., Hong, G., Scherrmann, J.-M., Cecchelli, R., and Roux, F. (1999). Transport of cationized anti-tetanus Fab′2 fragments across an in vitro blood–brain barrier model: Involvement of the transcytosis pathway. J. Neurochem. 73:2002–2008.

    PubMed  CAS  Google Scholar 

  • Gloor, S. M., Weber, A., Adachi, N., and Frei, K. (1997). Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochem. Biophys. Res. Commun. 239:804–809.

    Article  PubMed  CAS  Google Scholar 

  • Grabb, P. A., and Gilbert, M. R. (1995). Neoplastic and pharmacological influence on the permeability of an in vitro blood–brain barrier. J. Neurosurg. 82:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, J., Pryce, G., Devine, L., Male, D. K., dos Santos, W. L., Calder, V. L., and Adamson, P. (1996). SV40 large immortalised cell lines of the rat blood–brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J. Neuroimmunol. 71:51–63.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X., Zhang, J., Brann, D. W., and Yu, F.-S. X. (2003). Brain and retinal vascular endothelial cells with extended life span established by ectopic expression of telomerase. Invest. Ophthalmol. Vis. Sci. 44:3219–3225.

    Article  PubMed  Google Scholar 

  • Guillot, F. L., and Audus, K. L. (1991). Angiotensin peptide regulation of bovine brain microvessel endothelial cell monolayer permeability. J. Cardiovasc. Pharmacol. 18:212–218.

    Article  PubMed  CAS  Google Scholar 

  • Gumbleton, M., and Audus, K. L. (2001). Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood–brain barrier. J. Pharm. Sci. 90:1681–1698.

    Article  PubMed  CAS  Google Scholar 

  • Hamm, S., Dehouck, B., Kraus, J., Wolburg-Buchholz, K., Wolburg, H., Risau, W., Cecchelli, B., Engelhardt, B., and Dehouck, M. P. (2004). Astrocyte mediated modulation of blood–brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts. Cell Tissue Res. 315:157–166.

    Article  PubMed  Google Scholar 

  • Hart, M. N., VanDyk, L. F., Moore, S. A., Shasby, D. M., and Cancilla, P. A. (1987). Differential opening of the brain endothelial barrier following neutralization of the endothelial luminal anionic charge in vitro. J. Neuropathol. Exp. Neurol. 46:141–153.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff, R. F., Blasig, I. E., Bauer, H.-C., and Bauer, H. (2005). In search of the astrocytic factor(s) modulating blood–brain barrier functions in brain capillary endothelial cells in vitro. Cell. Mol. Neurobiol. 25:25–39.

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel, D., Nitz, T., Franke, H., Wegener, J., Hakvoort, A., Tilling, T., and Galla, H.-J. (1998). Hydroocortisone reinforces the blood–brain barrier properties in a serum free cell culture system. Biochem. Biophys. Res. Commun. 247:312–315.

    Article  PubMed  CAS  Google Scholar 

  • Homma, M., Suzuki, H., Kusuhara, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1999). High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4). J. Pharmacol. Exp. Ther. 288:198–203.

    PubMed  CAS  Google Scholar 

  • Hosoya, K., Tetsuka, K., Nagase, K., Tomi, M., Saeki, S., Ohtsuki, S., and Terasaki, T. (2000). Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci. 2(3):E27, 1–11. [http://www.pharmsci.org].

    Article  Google Scholar 

  • Hurst, R. D., Azam, S., Hurst, A., and Clark, J. B. (2001). Nitric-oxide-induced inhibition of glyceraldehyde-3-phosphate dehydrogenase may mediate reduced endothelial cell monolayer integrity in an in vitro model blood–brain barrier. Brain Res. 894:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D., and Clark, J. B. (1997). Nitric oxide-induced blood–brain barrier dysfunction is not mediated by inhibition of mitochondrial respiratory chain activity and/or energy depletion. Nitric Oxide 1:121–129.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D., and Clark, J. B. (1998). Alterations in transendothelial electrical resistance by vasoactive agonists and cyclic AMP in a blood–brain barrier model system. Neurochem. Res. 23:149–154.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D., and Clark, J. B. (1999). Butyric acid mediated induction of enhanced transendothelial resistance in an in vitro model blood–brain barrier system. Neurochem. Int. 35:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D., and Fritz, I. B. (1996). Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier. J. Cell. Physiol. 167:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Hurst, R. D., Heales, S. J. R., Dobbie, M. S., Barker, J. E., and Clark, J. B. (1998). Decreased endothelial cell glutathione and increased sensitivity to oxidative stress in an in vitro blood–brain barrier model system. Brain Res. 802:232–240.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, N., Naora, K., Hirano, H., Hashimoto, M., Masumara, S., and Iwamoto K. (1996). Isolation and primary culture of rat cerebral microvascular endothelial cells for studying drug transport in vitro. J. Pharmacol. Toxicol. Methods 36:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., Furuuchi, K., Kokai, Y., Nakagawa, T., Mori, M., and Sawada, N. (1999). Glial cell-line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochem. Biophys. Res. Commun. 261:108–112.

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, S., Kondo, T., Deli, M. A., Gobbel, G., Joó, F., Epstein, C. J., Yoshimoto, T., and Chan, P. H. (1996). The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem. Int. 29:205–211.

    Article  PubMed  CAS  Google Scholar 

  • Jong, A. Y., Stins, M. F., Huang, S.-H., Chen, S. H. M., and Kim, K. S. (2001). Traversal of Candida albicans across human blood–brain barrier in vitro. Infect. Immun. 69:4536–4544.

    Article  PubMed  CAS  Google Scholar 

  • Joó, F. (1985). The blood–brain barrier in vitro: Ten years of research on microvessels isolated from the brain. Neurochem. Int. 7:1–25.

    Article  PubMed  Google Scholar 

  • Joó, F. (1992). The cerebral microvessels in culture, an update. J. Neurochem. 58:1–17.

    Article  PubMed  Google Scholar 

  • Joó, F. (1993). The blood–brain barrier in vitro: The second decade. Neurochem. Int. 23:499–521.

    Article  PubMed  Google Scholar 

  • Joó, F., and Karnushina, I. (1973). A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48.

    PubMed  Google Scholar 

  • Kannan, R., Chakrabarti, R., Tang, D., Kim, K. J., and Kaplowitz, N. (2000). GSH transport in human cerebrovascular endothelial cells and human astrocytes: Evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Res. 852:374–382.

    Article  PubMed  CAS  Google Scholar 

  • Kása, P., Pákáski, M., Joó, F., and Lajtha, A. (1991). Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine. J. Neurochem. 56:2143–2146.

    Article  PubMed  Google Scholar 

  • Kempski, O., Villacara, A., Spatz, M., Dodson, R. F., Corn, C., Merkel, N., and Bembry, J. (1987). Cerebromicrovascular endothelial permeability. In-vitro studies. Acta Neuropathol. (Berl). 74:329–334.

    Article  CAS  Google Scholar 

  • Kiessling, F., Kartenbeck, J., and Haller, C. (1999). Cell–cell contacts in the human cell line ECV304 exhibit both endothelial and epithelial characteristics. Cell Tissue Res. 297:131–140.

    Article  PubMed  CAS  Google Scholar 

  • Kis, B., Deli, M. A., Kobayashi, H., Ábrahám, C. S., Yanagita, T., Kaiya, H., Isse, T., Nishi, R., Gotoh, S., Kangawa, K., Wada, A., Greenwood, J., Niwa, M., Yamashita, H., and Ueta, Y. (2001). Adrenomedullin regulates blood–brain barrier functions in vitro. Neuroreport 12:4139–4142.

    Article  PubMed  CAS  Google Scholar 

  • Kochi, S., Takanaga, H., Matsuo, H., Naito, M., Tsuruo, T., and Sawada, Y. (1999). Effect of cyclosporin A or tacrolimus on the function of blood–brain barrier cells. Eur. J. Pharmacol. 372:287–295.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., Kinouchi, H., Kawase, M., and Yoshimoto, T. (1996). Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci. Lett. 208:101–104.

    Article  PubMed  CAS  Google Scholar 

  • Krizanac-Bengez, L., Kapural, M., Parkinson, F., Cucullo, L., Hossain, M., Mayberg, M. R., and Janigro, D. (2003). Effects of transient loss of shear stress on blood–brain barrier endothelium: Role of nitric oxide and IL-6. Brain Res. 977:239–246.

    Article  PubMed  CAS  Google Scholar 

  • Krizbai, I. A., and Deli, M. A. (2003). Signalling pathways regulating the tight junction permeability in the blood–brain barrier. Cell Mol. Biol. (Noisy-le-grand). 49:23–31.

    CAS  Google Scholar 

  • Krizbai, I. A., Deli, M. A., Pestenácz, A., Siklós, L., Szabó, C. A., András, I., and Joó, F. (1998). Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 54:814–819.

    Article  PubMed  CAS  Google Scholar 

  • Kusuhara, H., and Sugiyama, Y. (2001a). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 1). Drug Discov. Today 6:150–156.

    Article  CAS  Google Scholar 

  • Kusuhara, H., and Sugiyama, Y. (2001b). Efflux transport systems for drugs at the blood–brain barrier and blood-cerebrospinal fluid barrier (Part 2). Drug Discov. Today 6:206–212.

    Article  CAS  Google Scholar 

  • Kusuhara, H., Suzuki, H., Naito, M., Tsuruo, T., and Sugiyama, Y. (1998). Characterization of efflux transport of organic anions in a mouse brain capillary endothelial cell line. J. Pharmacol. Exp. Ther. 285:1260–1265.

    PubMed  CAS  Google Scholar 

  • Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999). Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic. Biol. Med. 27:667–672.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.-W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., Kim, Y.-J., and Kim, K.-W. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood–brain barrier. Nat. Med. 9:900–906.

    Article  PubMed  CAS  Google Scholar 

  • Letrent, S. P., Polli, J. W., Humphreys, J. E., Pollack, G. M., Brouwer, K. R., and Brouwer, K. L. R. (1999). P-Glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem. Pharmacol. 58:951–957.

    Article  PubMed  CAS  Google Scholar 

  • Leveugle, B., Ding, W., Fenart, L., Dehouck, M.-P., Scanameo, A., Cecchelli, R., and Fillit, H. (1998). Heparin oligosaccharides that pass the blood–brain barrier inhibit β-amyloid precursor protein secretion and heparin binding to β-amyloid peptides. J. Neurochem. 70:736–744.

    Article  PubMed  CAS  Google Scholar 

  • Lippoldt, A., Kniesel, U., Liebner, S., Kalbacher, H., Kirsch, T., Wolburg, H., and Haller, H. (2000). Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood–brain barrier endothelial cells. Brain Res. 885:251–261.

    Article  PubMed  CAS  Google Scholar 

  • Liu, N. Q., Lossinsky, A. S., Popik, W., Li, X., Gujuluva, C., Kriederman, B., Roberts, J., Pushkarsky, T., Bukrinsky, M., Witte, M., Weinand, M., and Fiala, M. (2002). Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J. Virol. 76:6689–6700.

    Article  PubMed  CAS  Google Scholar 

  • Lundquist, S., Renftel, M., Brillault, J., Fenart, L., Cecchelli, R., and Dehouck, M. P. (2002). Prediction of drug transport through the blood–brain barrier in vivo: A comparison between two in vitro cell models. Pharm. Res. 19:976–981.

    Article  PubMed  CAS  Google Scholar 

  • Mackic, J. B., Stins, M., Jovanovic, S., Kim, K. S., Bartus, R. T., and Zlokovic, B. V. (1999). Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers. Pharm. Res. 16:1360–1365.

    Article  PubMed  CAS  Google Scholar 

  • Mackic, J. B., Stins, M., McComb, J. G., Calero, M., Ghiso, J., Kim, K. S., Yan, S. D., Stern, D., Schmidt, A. M., Frangione, B., and Zlokovic, B. V. (1998). Human blood–brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102:734–743.

    Article  PubMed  CAS  Google Scholar 

  • Madara, J. L. (1998). Regulation of the movement of solutes across tight junctions. Annu. Rev. Physiol. 60:143–159.

    Article  PubMed  CAS  Google Scholar 

  • Mark, K. S., Burroughs, A. R., Brown, R. C., Huber, J. D., and Davis, T. P. (2004). Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am. J. Physiol. Heart Circ. Physiol. 286:H174–H180.

    Article  PubMed  CAS  Google Scholar 

  • Mark, K. S., and Davis, T. P. (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 282:H1485–H1494.

    PubMed  CAS  Google Scholar 

  • Mark, K. S., and Miller, D. W. (1999). Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-α exposure. Life Sci. 64:1941–1953.

    Article  PubMed  CAS  Google Scholar 

  • Mark, K. S., Trickler, W. J., and Miller, D. W. (2001). Tumor necrosis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J. Pharmacol. Exp. Ther. 297:1051–1058.

    PubMed  CAS  Google Scholar 

  • Matter, K., and Balda, M. (2003a). Functional analysis of tight junctions. Methods 30:228–234.

    Article  CAS  Google Scholar 

  • Matter, K., and Balda, M. (2003b). Holey barrier: Claudins and the regulation of brain endothelial permeability. J. Cell. Biol. 161:459–460.

    Article  CAS  Google Scholar 

  • Megard, I., Garrigues, A., Orlowski, S., Jorajuria, S., Clayette, P., Ezan, E., and Mabondzo, A. (2002). A co-culture-based model of human blood–brain barrier: Application to active transport of indinavir and in vivo-in vitro correlation. Brain Res. 927:153–167.

    Article  PubMed  CAS  Google Scholar 

  • Mertsch, K., Blasig, I., and Grune, T. (2001). 4-Hydroxynonenal impairs the permeability of an in vitro rat blood–brain barrier. Neurosci. Lett. 314:135–138.

    Article  PubMed  CAS  Google Scholar 

  • Mi, H., Haeberle, H., and Barres, B. A. (2001). Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21:1538–1547.

    PubMed  CAS  Google Scholar 

  • Muruganandam, A., Herx, L. M., Monette, R., Durkin, J. P., and Stanimirovic, D. (1997). Development of immortalized human cerebromicrovascular endothelial cell line as an in vitro model of the human blood–brain barrier. FASEB J. 11:1187–1197.

    PubMed  CAS  Google Scholar 

  • Muruganandam, A., Tanha, J., Narang, S., and Stanimirovic, D. (2002). Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J. 16:240–242.

    PubMed  CAS  Google Scholar 

  • Nag, S. (2003). Blood–brain barrier permeability using tracers and immunohistochemistry. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols. Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 133–144.

    Google Scholar 

  • Neuhaus, J., Risau, W., and Wolburg, H. (1991). Induction of blood–brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann. N. Y. Acad. Sci. 633:578–580.

    Article  PubMed  CAS  Google Scholar 

  • Nitta, T., Hata, M., Gotoh, S., Seo, Y., Sasaki, H., Hashimoto, N., Furuse, M., and Tsukita, S. (2003). Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J. Cell. Biol. 161:653–660.

    Article  PubMed  CAS  Google Scholar 

  • Nitz, T., Eisenblatter, T., Psathaki, K., and Galla, H.-J. (2003). Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 981:30–40.

    Article  PubMed  CAS  Google Scholar 

  • Omidi, Y., Campbell, L., Barar, J., Connell, D., Akhtar, S., and Gumbleton, M. (2003). Evaluation of the immortalised mouse brain capillary endothelial cell line, b.End3, as an in vitro blood–brain barrier model for drug uptake and transport studies. Brain Res. 990:95–122.

    Article  PubMed  CAS  Google Scholar 

  • Panula, P., Joó, F., and Rechardt, L. (1978). Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34:95–97.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (2002). Drug and gene targeting to brain with molecular trojan horses. Nat. Rev. Drug Discov. 1:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, F. E., Friesen, J., Krizanac-Bengez, L., and Janigro, D. (2003). Use of three-dimensional in vitro model of the rat blood–brain barrier to assay nucleoside efflux from brain. Brain Res. 980:233–241.

    Article  PubMed  CAS  Google Scholar 

  • Pirro, J. P., Di Rocco, R. J., Narra, R. K., and Nunn, A. D. (1994). Relationship between in vitro transendothelial permeability and in vivo single-pass brain extraction. J. Nucl. Med. 35:1514–1519.

    PubMed  CAS  Google Scholar 

  • Plateel, M., Dehouck, M.-P., Torpier, G., Cecchelli, R., and Teissier, E. (1995). Hypoxia increases the susceptibility of oxidant stress and the permeability of the blood–brain barrier endothelial cell monolayer. J. Neurochem. 65:2138–2145.

    Article  PubMed  CAS  Google Scholar 

  • Plateel, M., Teissier, E., and Cecchelli, R. (1997). Hypoxia dramatically increases the nonspecific transport of blood-borne proteins to the brain. J. Neurochem. 68:874–877.

    Article  PubMed  CAS  Google Scholar 

  • Prat, A., Biernacki, K., Wosik, K., and Antel, J. P. (2001). Glial cell influence on the human blood–brain barrier. Glia 36:145–155.

    Article  PubMed  CAS  Google Scholar 

  • Ramsohoye, P. V., and Fritz I. B. (1998). Preliminary characterization of glial-secreted factors responsible for the induction of high electrical resistances across endothelial monolayers in a blood–brain barrier model. Neurochem. Res. 23:1545–1551.

    Article  PubMed  CAS  Google Scholar 

  • Raub, T. J. (1996). Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions. Am. J. Physiol. Cell Physiol. 271:C495–C503.

    CAS  Google Scholar 

  • Raub, T. J., Kuentzel, S. L., and Sawada, G. A. (1992). Permeability of bovine brain microvessel endothelial cells in vitro: Barrier tightening by a factor released from astroglioma cells. Exp. Cell Res. 199:330–340.

    Article  PubMed  CAS  Google Scholar 

  • Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood–brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–217.

    Article  PubMed  CAS  Google Scholar 

  • Reichel, A., Begley, D. J., and Abbott, N. J. (2003). An overview of in vitro techniques for blood–brain barrier studies. In Nag, S. (ed.), The Blood–Brain Barrier: Biology and Research Protocols. Methods in Molecular Medicine, Vol. 89, Humana Press, Totowa, NJ, pp. 307–324.

    Google Scholar 

  • Rist, R. J., Romero, I. A., Chan, M. W. K., and Abbott, N. J. (1996). Effects of energy deprivation induced by fluorocitrate in immortalised rat brain microvessel endothelial cells. Brain Res. 730:87–94.

    PubMed  CAS  Google Scholar 

  • Rist, R. J., Romero, I. A., Chan, M. W. K., Couraud, P.-O., Roux, F., and Abbott, N. J. (1997). F-Actin cytoskeleton and sucrose permeability of immortalised rat brain microvascular endothelial cell monolayers: Effects of cyclic AMP and astrocytic factors. Brain Res. 768:10–18.

    Article  PubMed  CAS  Google Scholar 

  • Romero, I. A., Prevost, M.-C., Perret, E., Adamson, P., Greenwood, J., Couraud, P.-O., and Ozden, S. (2000). Interactions between brain endothelial cells and human T-cell leukemia virus type 1-infected lymphocytes: Mechanisms of viral entry into the central nervous system. J. Virol. 74:6021–6030.

    Article  PubMed  CAS  Google Scholar 

  • Romero, I. A., Radewicz, K., Jubin, E., Michel, C. C., Greenwood, J., Couraud, P.-O., and Adamson, P. (2003). Changes in cytoskeletal and tight junctional proteins correlate with decreased permeability induced by dexamethasone in cultured rat brain endothelial cells. Neurosci. Lett. 344:112–116.

    Article  PubMed  CAS  Google Scholar 

  • Romero, I. A., Rist, R. J., Aleshaiker, A., and Abbott, N. J. (1997a). Metabolic and permeability changes caused by thiamine deficiency in immortalized rat brain microvessel endothelial cells. Brain Res. 756:133–140.

    Article  CAS  Google Scholar 

  • Romero, I. A., Rist, R. J., Chan, M W., and Abbott, N. J. (1997b). Acute energy deprivation syndromes: Investigation of m-dinitrobenzene and alpha-chlorhydrin toxicity on immortalized rat brain microvessel endothelial cells. Neurotoxicology 18:781–791.

    CAS  Google Scholar 

  • Roux, F., and Couraud, P.-O. (2005). Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell. Mol. Neurobiol. 25:41–58.

    Article  PubMed  Google Scholar 

  • Rubin, L. L., Hall, D. E., Porter, S., Barbu, K., Cannon, C., Horner, H. C., Janatpour, M., Liaw, C. W., Manning, K., Morales, J., Tanner, L. I., Tomaselli, K. J., and Bard, F. (1991). A cell culture model of the blood–brain barrier. J. Cell Biol. 115:1725–1735.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, L. L., and Staddon, J. M. (1999). The cell biology of the blood–brain barrier. Annu. Rev. Neurosci. 22:11–28.

    Article  PubMed  CAS  Google Scholar 

  • Ruchoux, M.-M., Brulin, P., Brillault, J., Dehouck, M.-P., Cecchelli, R., and Bataillard, M. (2002). Lessons from CADASIL. Ann. N. Y. Acad. Sci. 977:224–231.

    Article  PubMed  Google Scholar 

  • Rutten, M. J., Hoover, R. L., and Karnovsky, M. J. (1987). Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res. 425:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Sahagun, G., Moore, S. A., and Hart, M. N. (1990). Permeability of neutral vs. anionic dextrans in cultured brain microvascular endothelium. Am. J. Physiol. 259:H162–H166.

    PubMed  CAS  Google Scholar 

  • Schaddelee, M. P., Voorwinden, H. L., van Tilburg. E. W., Pateman, T. J., Ijzerman, A. P., Danhof, M., and de Boer, A. G. (2003). Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: Possible implications for the design of synthetic adenosine derivatives. Eur. J. Pharm. Sci. 19:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Schirmacher, A., Winters, S., Fischer, S., Goeke, J., Galla, H. J., Kullnick, U., Ringelstein, E. B., and Stogbauer, F. (2000). Electromagnetic fields (1.8 GHz) increase the permeability to sucrose of the blood–brain barrier in vitro. Bioelectromagnetics 21:338–345.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, C., Smales, C., Rubin, L. L., and Staddon, J. M. (1997). Lysophosphatidic acid increases tight junction permeability in cultured brain endothelial cells. J. Neurochem. 68:991–1000.

    Article  PubMed  CAS  Google Scholar 

  • Scism, J. L., Laska, D. A., Horn, J. W., Gimple, J. L., Pratt, S. E., Shepard, R. L., Dantzig, A. H., and Wrighton, S. A. (1999). Evaluation of an in vitro coculture model for the blood–brain barrier: Comparison of human umbilical vein endothelial cells (ECV304) and rat glioma cells from two commercial sources. In Vitro Cell Dev. Biol. Anim. 35:580–592.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G. L. (2001). Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7:345–350.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, C. D., Hines, I., Houghton, J., Warren, A., Jackson, T. H. IV, Jawahar, A., Nanda, A., Elrod, J. W., Long, A., Chi, A., Minagar, A., and Alexander, J. S. (2003). Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 285:H2592–H2598.

    PubMed  CAS  Google Scholar 

  • Smith, K. R., and Borchardt, R. T. (1989). Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm. Res. 6:466–473.

    Article  PubMed  CAS  Google Scholar 

  • Sobue, K., Yamamoto, N., Yoneda, K., Hodgson, M.E., Yamashiro, K., Tsuruoka, N., Tsuda, T., Katsuya, H., Miura, Y., Asai, K., and Kato, T. (1999). Induction of blood–brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res. 35:155–164.

    Article  PubMed  CAS  Google Scholar 

  • Song, H. S., Son, M. J., Lee, Y. M., Kim, W. J., Lee, S.-W., Kim, C. W., and Kim, K.-W. (2002). Oxygen tension regulates the maturation of the blood–brain barrier. Biochem. Biophys. Res. Commun. 290:325–331.

    Article  PubMed  CAS  Google Scholar 

  • Staddon, J. M., Herrenknecht, K., Smales, C., and Rubin, L. L. (1995). Evidence that tyrosine phosphorylation may increase tight junction permeability. J. Cell Sci. 108:609–619.

    PubMed  CAS  Google Scholar 

  • Stanness, K. A., Neumaier, J. F., Sexton, T. J., Grant, G. A., Emmi, A., Maris, D. O., and Janigro, D. (1999). A new model of the blood–brain barrier: Co-culture of neuronal, endothelial, and glial cells under dynamic conditions. Neuroreport 10:3725–3731.

    Article  PubMed  CAS  Google Scholar 

  • Stins, M. F., Badger, J., and Kim, K. S. (2001). Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog. 30:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Suda, K., Rothen-Rutishauser, B., Gunthert, M., and Wunderli-Allenspach, H. (2001). Phenotypic characterization of human umbilical vein endothelial (ECV304) and urinary carcinoma (T24) cells: Endothelial versus epithelial features. In Vitro Cell Dev. Biol. Anim. 37:505–514.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I., Yamashita, J., Kido, Y., Ohnari, A., Sai, Y., Shima, Y., Naruhashi, K., Koizumi, S., and Tsuji, A. (2000). Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood–brain barrier. J. Pharmacol. Exp. Ther. 295:146–152.

    PubMed  CAS  Google Scholar 

  • Tan, K. H., Dobbie, M. S., Felix, R. A., Barrand, M. A., and Hurst, R. D. (2001). A comparison of the induction of immortalized endothelial cell impermeability by astrocytes. Neuroreport 12:1329–1334.

    Article  PubMed  CAS  Google Scholar 

  • Tao-Cheng, J. H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:3293–3299.

    PubMed  CAS  Google Scholar 

  • Tatsuta, T., Naito, M., Oh-hara, T., Sugawara, I., and Tsuruo, T. (1992). Functional involvement of P-glycoprotein in blood–brain barrier. J. Biol. Chem. 267:20383–20391.

    PubMed  CAS  Google Scholar 

  • Terasaki, T., and Hosoya, K. (2001). Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol. Pharm. Bull. 24:111–118.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S. A., Abbruscato, T. J., Hau, V. S., Gillespie, T. J., Zsigo, J., Hruby, V. J., and Davis, T. P. (1997). Structure-activity relationships of a series of [D-Ala2]deltorphin I and II analogues; in vitro blood–brain barrier permeability and stability. J. Pharmacol. Exp. Ther. 281:817–825.

    PubMed  CAS  Google Scholar 

  • Tilling, T., Korte, D., Hoheisel, D., and Galla, H.-J. (1998). Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J. Neurochem. 71:1151–1157.

    Article  PubMed  CAS  Google Scholar 

  • Trottein, F., Descamps, L., Nutten, S., Dehouck, M.-P., Angeli, V., Capron, A., Cecchelli, R., and Capron, M. (1999). Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect. Immun. 67:3403–3409.

    PubMed  CAS  Google Scholar 

  • Tsuji, A., and Tamai, I. (1999). Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 36:277–290.

    Article  PubMed  CAS  Google Scholar 

  • Tunkel, A. R., Rosser, S. W., Hansen, E. J., and Scheld, W. M. (1991). Blood–brain barrier alterations in bacterial meningitis: Development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev. Biol. 27A:113–120.

    Article  PubMed  CAS  Google Scholar 

  • Utepbergenov, D. I., Mertsch, K., Sporbert, A., Tenz, K., Paul, M., Haseloff, R. F., and Blasig, I. E. (1998). Nitric oxide protects blood–brain barrier in vitro from hypoxia/reoxygenation-mediated injury. FEBS Lett. 424:197–201.

    Article  PubMed  CAS  Google Scholar 

  • van Bree, J. B. M. M., de Boer, A. G., Danhof, M., Ginsel, L. A., and Breimer, D. D. (1988). Characterization of an “in vitro” blood–brain barrier: Effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247:1233–1239.

    PubMed  CAS  Google Scholar 

  • van Bree, J. B. M. M., de Boer, A. G., Verhoef, J. C., Danhof, M., and Breimer, D. D. (1989). Transport of vasopressin fragments across the blood–brain barrier: “In vitro” studies using monolayer cultures of bovine brain endothelial cells. J. Pharmacol. Exp. Ther. 249:901–905.

    PubMed  CAS  Google Scholar 

  • Villacara, A., Kempski, O., and Spatz, M. (1990). Arachidonic acid and cerebromicrovascular endothelial permeability. In Long, D. (ed.), Advances in Neurology, Vol. 52, Raven Press, New York, NY, pp. 195–201.

    Google Scholar 

  • Wang, W., Dentler, W. L., and Borchardt, R. T. (2001). VEGF increases BMEC monolayer permeability by affecting occludin expression and tight junction assembly. Am. J. Physiol. Heart Circ. Physiol. 280:H434–H440.

    PubMed  CAS  Google Scholar 

  • Wang, W., Merrill, M. J., and Borchardt, R. T. (1996). Vascular endothelial growth factor affects permeability of brain microvessel endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 271:C1973–C1980.

    CAS  Google Scholar 

  • Wolburg, H., and Lippoldt, A. (2002). Tight junctions of the blood–brain barrier: Development, composition and regulation. Vascul. Pharmacol. 38:323–337.

    Article  PubMed  CAS  Google Scholar 

  • Wolburg, H., Neuhaus, J., Kniesel, U., Krauß, B., Schmid, E.-M., Öcalan, M., Farrell, C., and Risau, W. (1994). Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 107:1347–1357.

    PubMed  CAS  Google Scholar 

  • Yamagata, K., Tagami, M., Nara, Y., Fujino, H., Kubota, A., Numano, F., Kato, T., and Yamori, Y. (1997). Faulty induction of blood–brain barrier functions by astrocytes isolated from stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 24:686–691.

    Article  PubMed  CAS  Google Scholar 

  • Yamagata, K., Tagami, M., Takenaga, F., Yamori, Y., Nara, Y., and Itoh, S. (2003). Polyunsaturated fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience 116:649–656.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Mutkus, L. A., Sumner, D., Stevens, J. T., Eldridge, J. C., Strandhoy, J. W., and Aschner, M. (2001). Transendothelial permeability of chlorpyrifos in RBE4 monolayers is modulated by astrocyte-conditioned medium. Mol. Brain Res. 97:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, K. A., Dobbie, M. S., Kuhnle, G., Proteggente, A. R., Abbott, N. J., and Rice-Evans, C. (2003). Interaction between flavonoids and the blood–brain barrier: In vitro studies. J. Neurochem. 85:180–192.

    Article  PubMed  CAS  Google Scholar 

  • Zenker, D., Begley, D., Bratzke, H., Rübsamen-Waigmann, H., and von Briesen, H. (2003). Human blood-derived macrophages enhance barrier function of cultured brain capillary endothelial cells. J. Physiol. 551:1023–1032.

    Article  PubMed  CAS  Google Scholar 

  • Zysk, G., Schneider-Wald, B. K., Hwang, J. H., Bejo, L., Kim, K. S., Mitchell, T. J., Hakenbeck, R., and Heinz, H.-P. (2001). Pneumolysin in the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect. Immun. 69:845–852.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mária A. Deli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deli, M.A., Ábrahám, C.S., Kataoka, Y. et al. Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cell Mol Neurobiol 25, 59–127 (2005). https://doi.org/10.1007/s10571-004-1377-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-004-1377-8

Key words

Navigation