Skip to main content
Log in

Transdifferentiated Mesenchymal Stem Cells as Alternative Therapy in Supporting Nerve Regeneration and Myelination

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

 

1. Aims: Demyelination plays a crucial role in neurodegenerative processes and traumatic disorders. One possibility to achieve remyelination and subsequent restoration of neuronal function is to provide an exogenous source of myelinating cells via transplantation. In this context, mesenchymal stem cells (MSCs) have attracted interest. They are multipotent stem cells that differentiate into cells of the mesodermal lineage like bone, cartilage, fat, and muscle. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate.

2. Methods: We transformed cultivated rat MSCs into myelinating cells by using a cytokine cocktail. Transdifferentiated MSCs were characterized by an enhanced expression of LNGF-receptor, Krox20, and CD104, and a decreased expression of BMP receptor-1A as compared to untreated MSCs. The myelinating capacity was evaluated in vitro and in vivo. Therefore, PC12 cells, normally unmyelinated, were cocultivated with MSCs, transdifferentiated MSCs, and Schwann cells, or the respective cells were grafted into an autologous muscle conduit bridging a 2-cm gap in the rat sciatic nerve. Myelination of PC12 cells was demonstrated by electron microscopy. In vivo, after 3 and 6 weeks regeneration including myelination was monitored histologically and morphometrically. Autologous nerves and cell-free muscle grafts were used as control.

3. Results: Schwann cells and transdifferentiated MSCs were able to myelinate PC12 cells after 14 days in vitro. In vivo, autologous nerve grafts demonstrated the best results in all regenerative parameters. An appropriate myelination was noted in the Schwann cell groups and, albeit with restrictions, in the transdifferentiated MSC groups, while regeneration in the MSC groups and in the cell-free groups was impaired.

4. Conclusion: Our findings demonstrate that it may be possible to differentiate MSCs into therapeutically useful cells for clinical applications in myelin defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  • Akiyama, Y., Radtke, C., and Kocsis, J. D. (2002). Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J. Neurosci. 22:6623–6630.

    CAS  PubMed  Google Scholar 

  • Bachelin, C., Lachapelle, F., Girard, C., Moissonnier, P., Serguera-Lagache, C., Mallet, J., Fontaine, D., Chonjnowski, A., Le Guern, E., Nait-Oumesmar, B., and Baron-Van Evercooren, A. (2005). Efficient myelin repair in the macaque spinal cord autologous grafts of Schwann cells. Brain 128:540–549.

    Article  PubMed  Google Scholar 

  • Blakemore, W. F. (1977). Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 266:68–69.

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Martinez, D., Garavito, Z., Spinel, C., and Hurtado, H. (2002). Schwann cell-enriched cultures from adult human peripheral nerve: A technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C). J. Neurosci. Methods 114:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. R., Watkins, T. A., Cosgaya, J. M., Zhang, C., Chen, L., Reichardt, L. F., Shooter, E. M., and Barres, B. A. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43:183–191.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, H. L., Shy, M., and Feldman, E. L. (1999). Regulation of insulin-like growth factor-binding protein-5 expression during Schwann cell differentiation. Endocrinology 140:4478–4485.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R. I., McKay, R., and Almazan, G. (1999). Cyclic AMP regulates PDGF-stimulated signal transduction and differentiation of an immortalized optic-nerve-derived cell line. J. Exp. Biol. 202:461–473.

    CAS  PubMed  Google Scholar 

  • Cuevas, P., Carceller, F., Dujovny, M., Garcia-Gomez, I., Cuevas, B., Gonzalez-Corrochano, R., Diaz-Gonzalez, D., and Reimers, D. (2002). Peripheral nerve regeneration by bone marrow stromal cells. Neurol. Res. 24:634–638.

    Article  PubMed  Google Scholar 

  • Deber, C. M., and Reynolds, S. J. (1991). Central nervous system myelin: Structure, function, and pathology. Clin. Biochem. 24:113–134.

    Article  CAS  PubMed  Google Scholar 

  • Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem. Biophys. Res. Commun. 282:148–152.

    Article  CAS  PubMed  Google Scholar 

  • Dezawa, M. (2002). Central and peripheral nerve regeneration by transplantation of Schwann cells and transdifferentiated bone marrow stromal cells. Anat. Science Int. 77:12–25.

    Article  Google Scholar 

  • Dezawa, M., Takahashi, I., Esaki, M., Takano, M., and Sawada, H. (2001). Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur. J. Neurosci. 14:1771–1776.

    Article  CAS  PubMed  Google Scholar 

  • Donato, R. (2001). S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int. J. Biochem. Cell. Biol. 33:637–668.

    Article  CAS  PubMed  Google Scholar 

  • Fansa, H., and Keilhoff, G. (2004). Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurol. Res. 26:167–173.

    Article  CAS  PubMed  Google Scholar 

  • Fansa, H., Keilhoff, G., Plogmeier, K., Frerichs, O., Wolf, G., and Schneider, W. (1999). Successful implantation of Schwann cells in acellular muscle. J. Reconstr. Microsurg. 15:61–65.

    CAS  PubMed  Google Scholar 

  • Fansa, H., Keilhoff, G., Wolf, G., and Schneider, W. (2001). Tissue engineering of peripheral nerves: A comparison of venous and acellular muscle grafts with cultured Schwann cells. Plast. Reconstr. Surg. 107:485–494.

    Article  CAS  PubMed  Google Scholar 

  • Fortino, V., Torricelli, C., Gardi, C., Valacchi, G., Rossi Paccani, S., and Maioli, E. (2002). ERKs are the point of divergence of PKA and PKC activation by PTHrP in human skin fibroblasts. Cell. Mol. Life Sci. 59:2165–2171.

    Article  CAS  PubMed  Google Scholar 

  • Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. (1995). In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108:3181–3188.

    CAS  PubMed  Google Scholar 

  • Hoffmann, A., and Gross, G. (2001). BMP signaling pathways in cartilage and bone formation. Crit. Rev. Eukaryot. Gene Expr. 11:23–45.

    CAS  PubMed  Google Scholar 

  • Honmou, O., Felts, P. A., Waxman, S. G., and Koscis, J. D. (1996). Restoration of normal conduction properties in dfemyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J. Neurosci. 16:3199–3208.

    CAS  PubMed  Google Scholar 

  • Ide, C. (1996). Peripheral nerve regeneration. Neurosci. Res. 25:101–121.

    CAS  PubMed  Google Scholar 

  • Itoh, K., Fushiki, S., Kamiguchi, H., Arnold, B., Altevogt, P., and Lemmon, V. (in press). Disrupted Schwann cell–axon interactions in peripheral nerves of mice with altered L1-integrin interactions. Mol. Cell. Neurosci.

  • Jessen, K. R., and Mirsky, R. (2002). Signals that determine Schwann cell identity. J. Anat. 200:367–376.

    Article  CAS  PubMed  Google Scholar 

  • Kamada, T., Koda, M., Dezawa, M., Yoshinaga, K., Hishimoto, M., Koshizuka, S., Nishio, Y., Moriya, H., and Yamazaki, M. (2005). Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J. Neuropathol. Exp. Neurol. 64:37–45.

    PubMed  Google Scholar 

  • Kashofer, K., and Bonnet, D. (in press). Gene therapy progress and prospects: Stem cell plasticity. Gene Ther.

  • Keilhoff, G., Fansa, H., Schneider, W., and Wolf, G. (1999). In vivo predegeneration of peripheral nerves: An effective technique to obtain activated Schwann cells for nerve conduits. J. Neurosci. Methods 89:8917–8924.

    Article  Google Scholar 

  • Keilhoff, G., Fansa, H., Smalla, K. H., Schneider, W., and Wolf, G. (2000). Neuroma: A donor-age independent source of human Schwann cells for tissue engineered nerve grafts. Neuroreport 11:3805–3809.

    CAS  PubMed  Google Scholar 

  • Keilhoff, G., Stang, F., Goihl, A., Wolf, G., and Fansa, H. (in press). Peripheral nerve tissue engineering—autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng.

  • Kocsis, J. D., Akiyama, Y., Lankford, K. L., and Radtke, C. (2002). Cell transplantation of peripheral-myelin-forming cells to repair the injured spinal cord. J. Rehabil. Res. Dev. 39:287–298.

    PubMed  Google Scholar 

  • Kopen, G. C., Prockop, D. J., and Phinney, D. G. (2001). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U.S.A. 96:10711–10716.

    Article  Google Scholar 

  • Liu, H. M., Yang, L. H., and Yang, Y. J. (1995). Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J. Neuropathol. Exp. Neurol. 54:487–496.

    CAS  PubMed  Google Scholar 

  • Magnaghi, V., Cavarretta, I., Galbiati, M., Martini, L., and Melcangi, R. C. (2001). Neuroactive steroids and peripheral myelin proteins. Brain Res. Brain Res. Rev. 37:360–371.

    Article  CAS  PubMed  Google Scholar 

  • Mimura, T., Dezawa, M., Kanno, H., Sawada, H., and Yamamoto, I. (2004). Peripheral nerve regeneration by transplantation of bone marrow stromal cell-derived Schwann cells in adult rats. J. Neurosurg. 101:806–812.

    Article  PubMed  Google Scholar 

  • Mirsky, R., and Jessen, K. R. (1999). The neurobiology of Schwann cells. Brain Pathol. 9:293–311.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey, T. K., Kleitman, N., and Bunge, R. P. (1991). Isolation and functional characterization of Schwann cells derived from adult peripheral nerve. J. Neurosci. 11:2433–2442.

    CAS  PubMed  Google Scholar 

  • Near, S. L., Whalen, L. R., Miller, J. A., and Ishii, D. N. (1992). Insulin-like growth factor II stimulates motor nerve regeneration. Proc. Natl. Acad. Sci. U.S.A. 89:11716–11720.

    Article  CAS  PubMed  Google Scholar 

  • Oswald, J., Boxberger, S., Jorgensen, B., Feldmann, S., Ehninger, G., Bornhauser, M., and Werner, C. (2004). Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22:377–384.

    Article  PubMed  Google Scholar 

  • Otsuka, E., Yamaguchi, A., Hirose, S., and Hagiwara, H. (1999). Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. Am. J. Physiol. 277:132–138.

    Google Scholar 

  • Parkinson, D. B., Bhaskaran, A., Droggiti, A., Dickinson, S., D’Antonio, M., Mirsky, R., and Jessen, K. R. (2004). Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J. Cell Biol. 164:385–395.

    Article  CAS  PubMed  Google Scholar 

  • Phinney, D. G., Kopen, G., Isaacson, R. L., and Prockop, D. J. (1999). Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variations in yield, growth, and differentiation. J. Cell. Biochem. 72:570–585.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M. F., and Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95:9–20.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147.

    Article  CAS  PubMed  Google Scholar 

  • Previtali, S. C., Nodari, A., Taveggia, C., Pardini, C., Dina, G., Villa, A., Wrabetz, L., Quattrini, A., and Feltri, M. L. (2003). Expression of laminin receptors in Schwann cell differentiation: Evidence for distinct roles. J. Neurosci. 23:5520–5530.

    CAS  PubMed  Google Scholar 

  • Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74.

    Article  CAS  PubMed  Google Scholar 

  • Rong, L. L., Trojaborg, W., Qu, W., Kostov, K., Yan, S. D., Gooch, C., Szabolcs, M., Hays, A. P., and Schmidt, A. M. (2004). Antagonism of RAGE suppresses peripheral nerve regeneration. FASEB J. 18:1812–18127.

    Article  CAS  PubMed  Google Scholar 

  • Rutenberg, M. S., Hamazaki, T., Singh, A. M., and Terada, N. (2004). Stem cell plasticity, beyond alchemy. Int. J. Hematol. 79:15–21.

    Article  PubMed  Google Scholar 

  • Schröder, J. M. (2001). Pathology of Peripheral Nerves. Springer-Verlag, Berlin Heidelberg, New York.

    Google Scholar 

  • Stoll, G., and Müller, H. W. (1999). Nerve injury, axonal degeneration and neural regeneration: Basic insights. Brain Pathol. 9:313–325.

    Article  CAS  PubMed  Google Scholar 

  • Tohill, M., and Terenghi, G. (2004). Stem-cell plasticity and therapy for injuries of the peripheral nervous system. Bitechnol. Appl. Biochem. 40:17–24.

    Article  CAS  Google Scholar 

  • Tohill, M., Mantovani, C., Wiberg, M., and Terenghi, G. (2004). Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci. Lett. 362:200–203.

    Article  CAS  PubMed  Google Scholar 

  • Wiberg, M., and Terenghi, G. (2003). Will it be possible to produce peripheral nerves? Surg. Technol. Int. 11:303–310.

    PubMed  Google Scholar 

  • Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61:364–370.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Karla Klingenberg and Leona Bück for their contributions to our experiments. This work was supported by grants from the Hertie-Stiftung (Kei 1.01.1/03/011) and the Zinkann-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerburg Keilhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keilhoff, G., Stang, F., Goihl, A. et al. Transdifferentiated Mesenchymal Stem Cells as Alternative Therapy in Supporting Nerve Regeneration and Myelination. Cell Mol Neurobiol 26, 1233–1250 (2006). https://doi.org/10.1007/s10571-006-9029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9029-9

KEY WORDS:

Navigation