Skip to main content

Advertisement

Log in

Human subtelomere structure and variation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Work towards completion of the human reference genome sequence has revealed a great deal of complexity and plasticity in human subtelomeric regions. The highly variable subtelomeric repeat regions are filled with recently shuffled genomic segments, many of which contain sequences matching transcripts and transcript fragments; the rapid duplication and combinatorial evolution of these regions has generated an extremely diverse set of subtelomeric alleles in the human species, the complexity and potential significance of which is only beginning to be understood. This review summarizes recent progress in analyzing human subtelomeric sequence assemblies and large-scale variation in human subtelomere regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aviv A, Levy D, Mangel M (2003) Growth, telomere dynamics and successful and unsuccessful human aging. Mech Ageing Dev 124: 829–837.

    Article  PubMed  Google Scholar 

  • Azzalin CM, Nergadze SG, Giulotto E (2001) Human intrachromosomal telomeric-like repeats: sequence organization and mechanisms of origin. Chromosoma 110: 75–82.

    PubMed  Google Scholar 

  • Bailey JA, Gu Z, Clark RA et al. (2002) Recent segmental duplications in the human genome. Science 297: 1003–1007.

    PubMed  Google Scholar 

  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33: 203–207.

    Article  PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579: 859–862.

    Article  PubMed  Google Scholar 

  • Brown WR, MacKinnon PJ, Villasante A, Spurr N, Buckle VJ, Dobson MJ (1990) Structure and polymorphism of human telomere-associated DNA. Cell 63: 119–132.

    Article  PubMed  Google Scholar 

  • Cook GP, Tomlinson IM, Walter G et al. (1994) A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome14q. Nat Genet 7: 162–168.

    Article  PubMed  Google Scholar 

  • Deng Z, Atanasiu C, Burg JS, Broccoli D, Lieberman PM (2003) Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein–Barr virus OriP. J Virol 77: 11992–12001.

    Article  PubMed  Google Scholar 

  • der-Sarkissian H, Bacchetti S, Cazes L, Londono-Vallejo JA (2004) The shortest telomeres drive karyotype evolution in transformed cells. Oncogene 23: 1221–1228.

    Article  PubMed  Google Scholar 

  • der-Sarkissian H, Vergnaud G, Borde YM, Thomas G, Londono-Vallejo JA (2002) Segmental polymorphisms in the proterminal regions of a subset of human chromosomes. Genome Res 12: 1673–1678.

    Article  PubMed  Google Scholar 

  • Epel ES, Blackburn EH, Lin J et al. (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101: 17312–17315.

    Article  PubMed  Google Scholar 

  • Fan Y, Newman T, Linardopoulou E, Trask BJ (2002) Gene content and function of the ancestral chromosome fusion site in human chromosome 2q13–2q14.1 and paralogous regions. Genome Res 12: 1663–1672.

    Article  PubMed  Google Scholar 

  • Feuerbach F, Galy V, Trelles-Sticken E et al. (2002) Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nat Cell Biol 4: 214–221.

    Article  PubMed  Google Scholar 

  • Flint J, Bates GP, Clark K et al. (1997) Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet 6: 1305–1313.

    Article  PubMed  Google Scholar 

  • Forstemann K, Hoss M, Lingner J (2000) Telomerase-dependent repeat divergence at the 3′ ends of yeast telomeres. Nucleic Acids Res 28: 2690–2694.

    PubMed  Google Scholar 

  • Graakjaer J, Pascoe L, Der-Sarkissian H et al. (2004) The relative lengths of individual telomeres are defined in the zygote and strictly maintained during life. Aging Cell 3: 97–102.

    Article  PubMed  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107: 67–77.

    Article  PubMed  Google Scholar 

  • Iafrate AJ, Feuk L, Rivera MN et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951.

    PubMed  Google Scholar 

  • Ijdo JW, Lindsay EA, Wells RA, Baldini A (1992) Multiple variants in subtelomeric regions of normal karyotypes. Genomics 14: 1019–1025.

    Article  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (IHGSC) (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Google Scholar 

  • International Human Genome Sequencing Consortium (IHGSC) (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945.

    Google Scholar 

  • Lansdorp PM, Verwoerd NP, van de Rijke FM et al. (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5: 685–691.

    Article  PubMed  Google Scholar 

  • Lemmers RJ, de Kievit P, Sandkuijl L et al. (2002) Facioscapulohumeral muscular dystrophy is uniquely associated with oneof the two variants of the 4q subtelomere. Nat Genet 32: 235–236.

    Article  PubMed  Google Scholar 

  • Lundblad V (2002) Telomere maintenance without telomerase. Oncogene 21: 522–531.

    Article  PubMed  Google Scholar 

  • Macina RA, Negorev DG, Spais C, Ruthig LA, Hu X-L, Riethman HC (1994) Sequence organization of the human chromosome 2q telomere. Hum Mol Genet 3: 1847–1853.

    PubMed  Google Scholar 

  • Macina RA, Morii K, Hu X-L et al. (1995) Molecular cloning and RARE cleavage mapping of human 2p, 6q, 8q, 12q, and 18q telomeres. Genome Res 5: 225–232.

    PubMed  Google Scholar 

  • Mah N, Stoehr H, Schulz HL, White K, Weber BH (2001) Identification of a novel retina-specific gene located in a subtelomeric region with polymorphic distribution among multiple human chromosomes. Biochim Biophys Acta 1522: 167–174.

    PubMed  Google Scholar 

  • Martin CL, Wong A, Gross A, Chung J, Fantes JA, Ledbetter DH (2002) The evolutionary origin of human subtelomeric homologies – or where the ends begin. Am J Hum Genet 70: 972–984.

    Article  PubMed  Google Scholar 

  • Martin-Gallardo A, Lamerdin J, Sopapan P et al. (1995) Molecular analysis of a novel subtelomeric repeat with polymorphic chromosomal distribution. Cytogenet Cell Genet 71: 289–295.

    PubMed  Google Scholar 

  • Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3: 91–102.

    Google Scholar 

  • Mondello C, Pirzio L, Azzalin CM, Giulotto E (2000) Instability of interstitial telomeric sequences in the human genome. Genomics 68: 111–117.

    Article  PubMed  Google Scholar 

  • Monfouilloux S, Avet-Loiseau H, Amarger V, Balazs I, Pourcel C, Vergnaud G (1998) Recent human-specific spreading of a subtelomeric domain. Genomics 51: 165–176.

    Article  PubMed  Google Scholar 

  • Moyzis RK, Buckingham JM, Cram S et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85: 6622–6626.

    PubMed  Google Scholar 

  • Reddel RR (2003) Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194: 155–162.

    Article  PubMed  Google Scholar 

  • Reston JT, Hu X-L, Macina RA, Spais C, Riethman H (1995) Structure of the terminal 300 kb of DNA from human chromosome 21q. Genomics 26: 31–38.

    Article  PubMed  Google Scholar 

  • Riethman H (2003) Cloning, mapping, and sequencing telomeres. In: Dunham I, ed., Genomic Mapping and Sequencing. Wymondham, UK: Horizon Press, pp 257–277.

    Google Scholar 

  • Riethman H, Ambrosini A, Castaneda C et al. (2004) Mapping and initial analysis of human subtelomeric sequence assemblies. Genome Res 14: 18–28.

    Article  PubMed  Google Scholar 

  • Riethman H, Birren B, Gnirke A (1997) Preparation, manipulation, and mapping of high molecular weight DNA. In: Birren B et al., eds, Genome Analysis: A Laboratory Manual, Vol. 1: Analyzing DNA. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 83–248.

    Google Scholar 

  • Riethman HC, Xiang Z, Paul S et al. (2001) Integration of telomere sequences with the draft human genome sequence. Nature 409: 948–951.

    Article  PubMed  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Azzalin C et al. (2002) Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Hum Genet 110: 578–586.

    Article  PubMed  Google Scholar 

  • Sebat J, Lakshmi B, Troge J et al. (2004) Large-scale copy number polymorphism in the human genome. Science 305: 525–528.

    Article  PubMed  Google Scholar 

  • She X, Jiang Z, Clark RA et al. (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431: 927–930.

    Article  PubMed  Google Scholar 

  • Smit AFA, Green P. RepeatMasker Home page: http://ftp.genome.washington.edu/RM/RepeatMasker.html.

  • Stavenhagen JB, Zakian VA (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev 8: 1411–1422.

    PubMed  Google Scholar 

  • Trask BJ, Friedman C, Martin-Gallardo A et al. (1998) Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7: 13–26.

    Article  PubMed  Google Scholar 

  • van Deutekom JCT, Bakker E, Lemmers RJLF et al. (1996) Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counseling and etiology of FSHD1. Hum Mol Genet 5: 1997–2003.

    Article  PubMed  Google Scholar 

  • van Geel M, Eichler EE, Beck AF et al. (2002) A cascade of complex subtelomeric duplications during the evolution of the hominoid and Old World monkey genomes. Am J Hum Genet 70: 269–278.

    Article  PubMed  Google Scholar 

  • van Overveld PG, Lemmers RJ, Deidda G et al. (2000) Interchromosomal repeat array interactions between chromosomes 4 and 10: a model for subtelomeric plasticity. Hum Mol Genet 9: 2879–2884.

    Article  PubMed  Google Scholar 

  • Wilkie AOM, Higgs DR, Rack KA et al. (1991) Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64: 595–606.

    Article  PubMed  Google Scholar 

  • Wright WE, Shay JW (2002) Historical claims and current interpretations of replicative aging. Nat Biotechnol 20: 682–688.

    PubMed  Google Scholar 

  • Zhou J, Chau CM, Deng Z et al. (2005) Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J 24: 1406–1417.

    Article  PubMed  Google Scholar 

  • Zijlmans JM, Martens UM, Poon SS et al. (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 94: 7423–7428.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Riethman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riethman, H., Ambrosini, A. & Paul, S. Human subtelomere structure and variation. Chromosome Res 13, 505–515 (2005). https://doi.org/10.1007/s10577-005-0998-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-0998-1

Key words

Navigation