Skip to main content
Log in

Base excision repair in nucleosome substrates

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Eukaryotic cells must repair DNA lesions within the context of chromatin. Much of our current understanding regarding the activity of enzymes involved in DNA repair processes comes from in-vitro studies utilizing naked DNA as a substrate. Here we review current literature investigating how enzymes involved in base excision repair (BER) contend with nucleosome substrates, and discuss the possibility that some of the activities involved in BER are compatible with the organization of DNA within nucleosomes. In addition, we examine evidence for the role of accessory factors, such as histone modification enzymes, and the role of the histone tail domains in moderating the activities of BER factors on nucleosomal substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angelov D, Vitolo JM, Mutskov V, Dimitrov S, Hayes JJ (2001) Preferential interaction of the core histone tail domains with linker DNA. PNAS 98: 6599–6604.

    Article  CAS  PubMed  Google Scholar 

  • Beard BC, Wilson SH, Smerdon MJ (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. PNAS 100: 7465–7470.

    Article  CAS  PubMed  Google Scholar 

  • Beard BC, Stevenson JJ, Wilson SH, Smerdon MJ (2005) Base excision repair in nucleosomes lacking histone tails. DNA Repair 4: 203–209.

    Article  CAS  PubMed  Google Scholar 

  • Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ (2000) Human DNA ligase I efficiently seals nicks in nucleosomes. The EMBO J 19: 5492–5501.

    Article  CAS  PubMed  Google Scholar 

  • Chafin DR, Hayes JJ (2001) Site-directed cleavage of DNA by linker histone-Fe(II) EDTA conjugates. Meth Mol Biol 148: 275–290.

    Google Scholar 

  • Doetsch PW (2002) Translesion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis. Mutat Res 510: 131–140.

    CAS  PubMed  Google Scholar 

  • Edayathumangalam RS, Weyermann P, Dervan PB, Gottesfeld JM, Luger K (2005) Nucleosomes in solution exist as a mixture of twist-defect states. J Mol Biol 345: 103–114.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421: 436–440.

    Google Scholar 

  • Gowher H, Stockdale CJ, Goyal R, Ferreira H, Owen-Hughes T, Jeltsch A (2005) De novo methylation of nucleosomal DNA by the mammalian Dnmt1 and Dnmt3A DNA methyltransferases. Biochemistry 44: 9899–9904.

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Hassa PO, Imhof R, Hottiger MO (2001a) Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410: 387–391.

    Article  CAS  PubMed  Google Scholar 

  • Hasan S, Stucki M, Hassa PO et al. (2001b) Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 7: 1221–1231.

    Article  CAS  PubMed  Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. PNAS 87: 7405–7409.

    CAS  PubMed  Google Scholar 

  • He Z, Ingles CJ (1997) Isolation of human complexes proficient in nucleotide excision repair. Nucleic Acids Res 25: 1136– 1141.

    CAS  PubMed  Google Scholar 

  • Henricksen LA, Bambara RA (1998) Multiprotein reactions in mammalian DNA replication. Leuk Res 22: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Hosfield DJ, Daniels DS, Mol CD, Putnam CD, Parikh SS, Tainer JA (2001) DNA damage recognition and repair pathway coordination revealed by the structural biochemistry of DNA repair enzymes. Prog Nucleic Acid Res Mol Biol 68: 315–347.

    CAS  PubMed  Google Scholar 

  • Huggins CF, Chafin DR, Aoyagi S, Henricksen LA, Bambara RA, Hayes JJ (2002) Flap endonuclease I efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell 10: 1201–1211.

    Article  CAS  PubMed  Google Scholar 

  • Krokan HE, Standal R, Slupphaug G (1997) DNA glycosylases in the base excision repair of DNA. Biochem J 325: 1–16.

    CAS  PubMed  Google Scholar 

  • Kysela B, Chovanec M, Jeggo PA (2005) Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligaseIV-dependent ligation in the presence of histone H1. PNAS 102: 1877–1882.

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Hayes JJ (1998) Linker DNA and H1-dependent reorganization of histone-DNA interactions within the nucleosome. Biochemistry 37: 8622–8628.

    Google Scholar 

  • Li S, Smerdon MJ (2002) Nucleosome structure and repair of N-methyl purines in the GAL-10 genes of Saccharomyces cerevisiae. J Biol Chem 277: 44651–44659.

    CAS  PubMed  Google Scholar 

  • Li G, Levitus M, Bustamante C, Widom J (2005) Rapid spontaneous accessibility of nucleosomal DNA. Nature Struct Mol Biol 12: 46–53.

    CAS  Google Scholar 

  • Liu X, Smerdon MJ (2000) Nucleotide excision repair of the 5S ribosomal RNA gene assembled into a nucleosome. J Biol Chem 275: 23729–23735.

    CAS  PubMed  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389: 251–260.

    CAS  PubMed  Google Scholar 

  • McCullough AK, Dodson ML, Lloyd RS (1999) Initiation of base excision repair: Glycosylase mechanisms and structures. Annu Rev Biochem 68: 255–285.

    Article  CAS  PubMed  Google Scholar 

  • Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451: 39–51.

    CAS  PubMed  Google Scholar 

  • Mol CD, Izumi T, Mitra S, Tainer JA (2000) DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403: 451–456.

    CAS  PubMed  Google Scholar 

  • Negri R, Buttinelli M, Panetta G, De Arcangelis V, Di Mauro E, Travers A (2001) Sequence dependence of translational positioning of core nucleosomes. J Mol Biol 307: 987–999.

    Article  CAS  PubMed  Google Scholar 

  • Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21: 5943–5952.

    Article  CAS  PubMed  Google Scholar 

  • Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil–DNA glycosylase with DNA. EMBO J 17: 5214–5226.

    Article  CAS  PubMed  Google Scholar 

  • Parikh SS, Putnam CD, Tainer JA (2000) Lessons learned from structural results on uracil–DNA glycosylase. Mutat Res 460: 183–199.

    CAS  PubMed  Google Scholar 

  • Peterson CL, Cote J (2004) Cellular machineries for chromosomal DNA repair. Genes Dev 18: 602–616.

    Article  CAS  PubMed  Google Scholar 

  • Polach KJ, Widom J (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254: 130–149.

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Prasad R, Wilson SH, Kraut J, Pelletier H (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36: 11205–11215.

    CAS  PubMed  Google Scholar 

  • Seeberg E, Eide L, Bjoras M (1995) The base excision repair pathway. Trends Biol Sci 20: 391–397.

    CAS  Google Scholar 

  • Shrader TE, Crothers DM (1989) Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 86: 7418–7422.

    Google Scholar 

  • Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA (1996) A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature 384: 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Smerdon MJ, Conconi A (1999) Modulation of DNA damage and DNA repair in chromatin. Prog Nucleic Acid Res Mol Biol 62: 227–255.

    CAS  PubMed  Google Scholar 

  • Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM 3rd (2002) A quantitative model of human base excision repair. I. Mechanistic insights. Nucleic Acids Res 30: 1817–1825.

    Article  CAS  PubMed  Google Scholar 

  • Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9: 265–277.

    Article  CAS  PubMed  Google Scholar 

  • Tuo J, Jaruga P, Rodriguez H, Dizdaroglu M, Bohr VA (2002a) The cockayne syndrome group B gene product is involved incellular repair of 8-hydroxyadenine in DNA. J Biol Chem 277: 30832–30837.

    Article  CAS  PubMed  Google Scholar 

  • Tuo J, Chen C, Zeng X, Christiansen M, Bohr VA (2002b) Functional crosstalk between hOgg1 and the helicase domain of Cokayne syndrome group B protein. DNA Repair 1: 913–927.

    Article  CAS  PubMed  Google Scholar 

  • Ura K, Hayes JJ (2002) Nucleotide excision repair and chromatin remodeling. Eur J Biochem 269: 2288–2293.

    Article  CAS  PubMed  Google Scholar 

  • Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11: 130–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jagannathan, I., Cole, H.A. & Hayes, J.J. Base excision repair in nucleosome substrates. Chromosome Res 14, 27–37 (2006). https://doi.org/10.1007/s10577-005-1020-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-1020-7

Key words

Navigation