Skip to main content
Log in

Histone modification and the control of heterochromatic gene silencing in Drosophila

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Covalent modifications of histones index structurally and functionally distinct chromatin domains in eukaryotic nuclei. Drosophila with its polytene chromosomes and developed genetics allows detailed cytological as well as functional analysis of epigenetic histone modifications involved in the control of gene expression pattern during development. All H3K9 mono- and dimethylation together with all H3K27 methylation states and H4K20 trimethylation are predominant marks of pericentric heterochromatin. In euchromatin, bands and interbands are differentially indexed. H3K4 and H3K36 methylation together with H3S10 phosphorylation are predominant marks of interband regions whereas in bands different H3K27 and H4K20 methylation states are combined with acetylation of H3K9 and H3K14. Genetic dissection of heterochromatic gene silencing in position-effect variegation (PEV) by Su(var) and E(var) mutations allowed identification and functional analysis of key factors controlling the formation of heterochromatin. SU(VAR)3-9 association with heterochromatic sequences followed by H3K9 methylation initiates the establishment of repressive SU(VAR)3-9/HP1/SU(VAR)3-7 protein complexes. Differential enzymatic activities of novel point mutants demonstrate that the silencing potential of SU(VAR)3-9 is mainly determined by the kinetic properties of the HMTase reaction. In Su(var)3-9 ptn a significantly enhanced enzymatic activity results in H3K9 hypermethylation, enhanced gene silencing and extensive chromatin compaction. Mutations in factors controlling active histone modification marks revealed the dynamic balance between euchromatin and heterochromatin. Further analysis and definition of Su(var) and E(var) genes in Drosophila will increase our understanding of the molecular hierarchy of processes controlling higher-order structures in chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aagaard L, Laible G, Selenko P et al. (1999) Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins that complex with the heterochromatin component M31. EMBO J 18: 1923–1938.

    Article  PubMed  CAS  Google Scholar 

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5: 367–375.

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K, Javerzat J-P, Crabston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233.

    PubMed  CAS  Google Scholar 

  • Armstrong JA, Papoulas O, Daubresse G et al. (2002) The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 21: 5245–5254.

    Article  PubMed  CAS  Google Scholar 

  • Baumbusch LO, Thorstensen T, Krauss V et al. (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionary conserved classes. Nucleic Acids Res 29: 4319–4333.

    Article  PubMed  CAS  Google Scholar 

  • Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419: 857–862.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Zhimulev IF (1991) Cytogenetic and molecular aspects of position effect variegation in Drosophila III. Continuous and discontinuous compaction of chromosomal material is a result of position effect variegation. Chromosoma 100: 453–466.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Demakova OV, Umbetova GH, Zhimulev IF (1993) Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatin-associated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation. Chromosoma 102: 53–590.

    Article  Google Scholar 

  • Birve A, Sengupta AK, Beuchle D et al. (2001) Su(z)12, a novel Drosophila Polycomb group gene that is conserved in vertebrates and plants. Development 128: 3371–3379.

    PubMed  CAS  Google Scholar 

  • Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100: 11535–11540.

    Article  PubMed  CAS  Google Scholar 

  • Cam H, Grewal SIS (2004) RNA interference and epigenetic control of heterochromatin assembly in fission yeast. Cold Spring Habor Symp Quant Biol 69: 419–427.

    Article  CAS  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905–915.

    Article  PubMed  CAS  Google Scholar 

  • Cleard F, Spierer P (2001) Position-effect variegation in Drosophila: the modifier Su(var)3-7 is a modular DNA-binding protein. EMBO Rep 21: 1095–1100.

    Article  Google Scholar 

  • Cleard F, Delattre M, Spierer P (1997) SU(VAR)3-7 a Drosophila heterochromatin-associated protein and companion of HP1 in the genomic silencing of position-effect variegation. EMBO J 16: 5280–5288.

    Article  PubMed  CAS  Google Scholar 

  • Czermin B, Schotta G, Hülsmann BB et al. (2001) Physical and functional interaction of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep 2: 915–919.

    Article  PubMed  CAS  Google Scholar 

  • Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Delattre M, Spierer A, Tonka C-H, Spierer P (2000) The genomic silencing of position-effect variegation in Drosophila melanogaster: Interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1. J Cell Sci 113: 4253–4261.

    PubMed  CAS  Google Scholar 

  • Demakov SA, Semeshin VF, Zhimulev IF (1993) Cloning and moleculargenetic analysis of Drosophila melanogaster interband DNA. Mol Gen Genet 238: 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Demerec M, Slizynska H (1937) Mottled white 258-18 of Drosophila melanogaster. Genetics 22: 641–649.

    PubMed  CAS  Google Scholar 

  • Dorn R, Szidonya J, Korge G et al. (1993). P Transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics 133: 279–290.

    PubMed  CAS  Google Scholar 

  • Ebert A, Schotta G, Lein S et al. (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18: 2973–2983.

    Article  PubMed  CAS  Google Scholar 

  • Egel R, Willer M, Neisen O (1989) Unblocking of meiotic crossing-over between the silent mating-type cassettes of fission yeast, conditioned by the recessive, pleiotropic mutant rik1. Curr Genet 15: 407–410.

    Article  Google Scholar 

  • Eggert H, Gortchakov A, Saumweber H (2004) Identification of the Drosophila interband-specific protein Z4 as a DNA-binding zinc-finger protein determining chromosomal structure. J Cell Sci 15: 4253–4264.

    Article  CAS  Google Scholar 

  • Eissenberg JC, Elgin SC (2000) The HP1 protein family: getting a grip on chromatin. Curr Opin Genet Dev 10: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Ruusala T (1994) Mutations in rik1, clr2, clr3, and clr4 genes asymmetrically derepress the silent mating-type loci in fission yeast. Genetics 136: 53–64.

    PubMed  CAS  Google Scholar 

  • Feng Q, Wang H, Ng HH et al. (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12: 1052–1058.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Hofmann I, Naumann K, Reuter G (2006) Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J Plant Physiol 163: 358–368.

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183.

    Article  PubMed  CAS  Google Scholar 

  • Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU (2004) HP1 is essential for DNA methylation in Neurospora. Mol Cell 13: 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cao M, O'Sullivan R, Peters AHFM, Jenuwein T, Blasco MA (2003) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Greil F, van der Kraan I, Delrow J et al. (2003) Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location. Genes Dev 17: 2825–2838.

    Article  PubMed  CAS  Google Scholar 

  • Hall IM, Noma K, Grewal SIS (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Hochheimer A, Zhou S, Zheng S, Holmes MC, Tjian R (2002) TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila. Nature 420: 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJS (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nature Genet 19: 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPONITE histone H3 methyltransferase. Nature 416: 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z et al. (2004) Dimethylation of histone H3K9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112: 308–315.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AS, Harp JM, Devarakonda S, Kim Y, Rastinejad F, Khoasanizadeh S (2002) The active site of the SET domain is constructed on a knot. Nature Struct Biol 9: 833–838.

    PubMed  CAS  Google Scholar 

  • Jaquet Y, Delattre M, Montoya-Burgos J, Spierer A, Spierer P (2006) Conserved domains control heterochromatin localization and silencing properties of SU(VAR)3-7. Chromosoma (In press).

  • Jaquet Y, Delattre M, Spierer A, Spierer P (2002) Functional dissection of the Drosophila modifier of variegation Su(var)3-7. Development 129: 3975–3982.

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jia S, Noma K, Grewal SIS (2004) RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304: 1971–1976.

    Article  PubMed  CAS  Google Scholar 

  • Jones RS, Gelbart WM (1993) The Drosophila Polycomb-group gene Enhancer of zeste contains a region with seqeunce similarity to trithorax. Mol Cell Biol 13: 6357–6366.

    PubMed  CAS  Google Scholar 

  • Kaplan CD, Morris JR, Wu C, Winston F (2000) Spt5 and Spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev 14: 2623–2634.

    Article  PubMed  CAS  Google Scholar 

  • Karachentsev D, Sarma K, Reinberg D, Steward R (2005) PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev 19: 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Katsani KR, Arredondo JJ, Kal AJ, Verrijzer CP (2001) A homeotic mutation in the trithorax SET domain impedes histone binding. Genes Dev 15: 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  • Krauss V, Reuter G (2000) Two genes become one: the genes encoding heterochromatin protein SU(VAR)3-9 and translation initiation factor subunit eIF-2γ are joined to a dicistronic unit in holometabloic insects. Genetics 156: 1157–1167.

    PubMed  CAS  Google Scholar 

  • Krauss V, Fassl A, Fiebig P, Patties I, Sass H (2006) The evolution of the histone Methyltransferase gene Su(var)3-9 includes a fusion with and a re-fission from a functionally unrelated gene. BMC Evol Biol 6 (In press).

  • Kuhfittig S, Szabad J, Schotta G, Hoffmann J, Máthé E, Reuter G (2001) Pitkin D a novel gain-of-function enhancer of position-effect variegation affects chromatin regulation during oogenesis and early embryogenesis in Drosophila. Genetics 157: 1227–1244.

    PubMed  CAS  Google Scholar 

  • Lachner M, O'Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116: 2117–2124.

    Article  PubMed  CAS  Google Scholar 

  • Laible G, Wolf A, Dorn R et al. (1997). Mammalian homologs of Enhancer of zeste mediate position-effect variegation in Drosophila and restore telomeric silencing in S. cerevisiae. EMBO J 16: 3219–3232.

    Article  PubMed  CAS  Google Scholar 

  • Lindroth MA, Shultis D, Jasencakova Z et al. (2004) Dual histone H3 methylation marks at lysine 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 23: 4146–4155.

    Article  Google Scholar 

  • Lorentz AK, Ostermann K, Fleck O, Schmidt H (1994) Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatin-associated proteins from Drosophila and mammals. Gene 143: 323–330.

    Article  Google Scholar 

  • Min J, Zhang X, Cheng X, Grewal SS, Xu R-M (2002) Structure of the SET domain histine lysine methyltransferase Clr4. Nature Struct Biol 9: 828–832.

    PubMed  CAS  Google Scholar 

  • Miotto B, Sagnier T, Berenger H, Bohmann D, Pradel J, Graba Y (2006) Chameau HAT and Drpd3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev 20: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Mottus R, Sobels RE, Grigliatti TA (2000) Mutational analysis of a histone deacetylase in Drosophila melanogaster: missence mutations suppress gene silencing associated with position effect variegation. Genetics 154: 657–668.

    PubMed  CAS  Google Scholar 

  • Müller J, Hart CM, Francis NJ et al. (2002) Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111: 197–208.

    Article  PubMed  Google Scholar 

  • Nakamura T, Mori T, Tada S, Krajewski W et al. (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10: 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JD, Stahl BD, Allis CD, Grenwal SIS (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Naumann K, Fischer A, Hofmann I et al. (2005) Pivotal role of AtSUVH2 in control of heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24: 1418–1429.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka K, Rice JC, Sarma K et al. (2002) PR-Set7 Is a Nucleosome-Specific Methyltransferase that Modifies Lysine 20 of Histone H4 and Is Associated with Silent Chromatin. Mol Cell 9: 1201–1213.

    Article  PubMed  CAS  Google Scholar 

  • Noma K, Grewal SIS (2002) Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast. Proc Natl Acad Sci USA 99: 16438–16445.

    Article  PubMed  CAS  Google Scholar 

  • O'Carroll D, Scherthan H, Peters AH et al. (2000) Isolation and characterization of Suvh39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol Cell Biol 20: 9423–9433.

    Article  PubMed  CAS  Google Scholar 

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG et al. (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303: 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Peters AHFM, O’Carroll D, Scherthan H et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–337.

    Article  PubMed  CAS  Google Scholar 

  • Peters AHFM, Kubicek S, Mechtler K et al. (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12: 1577–1589.

    Article  PubMed  CAS  Google Scholar 

  • Prokofyeva-Belgovskaya AA (1947) Heterochromatization as a change of chromosome cycle. J Genet 48: 80–98.

    Article  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D, Stahl BD et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Reuter G, Werner W, Hoffman HJ (1982) Mutants affecting position effect heterochromatinization in Drosophila melanogaster. Chromosoma 85: 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Reuter G, Giarre N, Farah J, Gausz J, Spierer A, Spierer P (1990) Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 344: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B et al. (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12: 1591–1598.

    Article  PubMed  CAS  Google Scholar 

  • Roguev A, Schaft D, Shevchenko A et al. (2001) The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 20: 7137–7148.

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119: 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ et al. (2002) Active genes are trimethylated at K4 of histone H3. Nature 419: 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Krauss V et al. (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21: 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Ebert A, Dorn R, Reuter G (2003a) Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Sem Cell Dev Biol 14: 67–75.

    Article  CAS  Google Scholar 

  • Schotta G, Ebert A, Reuter G (2003b) SU(VAR)3-9 a conserved key function in heterochromatic gene silencing. Genetica 117: 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K et al. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  • Schultz J (1936) Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA 22: 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Sedkov Y, Cho E, Petruk S et al. (2003) Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426: 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Seeger K, Lein S, Reuter G, Berger S (2005) STD-measurements with SU(VAR)3-9 and S-adenosyl-l-methionine. Biochemistry 44: 6208–6213.

    Article  PubMed  CAS  Google Scholar 

  • Semeshin VF, Demakov SA, Zhimulev IF (1989) Characteristics of structures of Drosophila polytene chromosomes formed by transposable DNA fragments. Genetica (Russ) 25: 1968–1978.

    CAS  Google Scholar 

  • Shanower GA, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P (2005) Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 169: 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C et al. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119: 941–953.

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Pannuti A, Gu W et al. (2000) The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20: 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifier of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci 118: 5047–5057.

    Article  PubMed  CAS  Google Scholar 

  • Stokes DG, Tartof KD, Perry RP (1996) CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc Natl Acad Sci USA 93: 7137–7142.

    Article  PubMed  CAS  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414: 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Klar AJS (1992) The clr1 locus regulates the expression of the cryptic mating-type loci of fission yeast. Genetics 131: 287–296.

    PubMed  CAS  Google Scholar 

  • Thon G, Verhein-Hansen J (2000) Four-chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155: 551–568.

    PubMed  CAS  Google Scholar 

  • Thon G, Cohen A, Klar AJS (1994) Three additional linkage groups that repress transcription and meiotic recombination in the mating-type region of Schizosaccharomyces pombe. Genetics 138: 29–38.

    PubMed  CAS  Google Scholar 

  • Trievel RC, Beach BM, Dirk LMA, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111: 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13: 3822–3831.

    PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H et al. (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439: 811–816

    Article  PubMed  CAS  Google Scholar 

  • Vaute O, Nicolas E, Vandal L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30: 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105: 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Wustmann G, Szidonya J, Taubert H, Reuter G (1989) The genetics of position-effect modifying loci in Drosophila melanogaster. Mol Gen Genet 217: 520–527.

    PubMed  CAS  Google Scholar 

  • Zhang X, Tamaru H, Khan SI et al. (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111: 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF (1999) Genetic organization of polytene chromosomes. Advanc Genet 39: 1–599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunter Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, A., Lein, S., Schotta, G. et al. Histone modification and the control of heterochromatic gene silencing in Drosophila . Chromosome Res 14, 377–392 (2006). https://doi.org/10.1007/s10577-006-1066-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-006-1066-1

Key words

Navigation