Skip to main content
Log in

In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

SUMO-1, a ubiquitin-like protein, is covalently bound to many proteins, leading to chromatin inactivation and transcriptional repression. The high concentration of SUMO-1 on the XY body in rodents suggests that this protein has an important role in facultative heterochromatin organization. In human, the precise role of SUMO in chromatin/heterochromatin organization remains to be defined. Here we describe the SUMO-1 distribution, during human male meiosis, in relation to the formation of the different types of heterochromatin. We show that, during late pachynema, SUMO-1 appears on the constitutive heterochromatin, but is excluded from the XY body facultative heterochromatin. At the SUMO-1 labelled areas, the presence of HP1alpha protein, as well as of trimethylated H3-K9 and H4-K20 histone modifications, supports a role for SUMO-1 in constitutive heterochromatin organization. We also establish that, on the constitutive heterochromatin, H4-K20me3 staining progressively decreases as SUMO-1 staining increases, suggesting that core histone(s), and histone H4 in particular, are direct targets for sumoylation. Our results also suggest that, in the context of global histone H4 hyperacetylation that precedes the histone-to-protamine transition at postmeiotic stages of spermatogenesis, histone H4 sumoylation may represent an important epigenetic marker replacing methylation on the constitutive heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barlow AL, Hultén MA (1996) Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I human spermatocytes. Chromosome Res 4: 562–573.

    Article  PubMed  CAS  Google Scholar 

  • Baudat F, Keeney S (2001) Meiotic recombination: making and breaking go hand in hand. Curr Biol 11: R45–48.

    Article  PubMed  CAS  Google Scholar 

  • Boddy MN, Howe K, Etkin LD, Solomon E, Freemont PS (1996) PIC, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13: 971–982.

    PubMed  CAS  Google Scholar 

  • Brown T, Robertson FW, Dawson BM, Hanglin SJ, Page BM (1980) Individual variation of centric heterochromatin in man. Hum Genet 55: 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Brown PW, Judis L, Chan ER et al. (2005) Meiotic synapsis proceeds from a limited number of subtelomeric sites in the human male. Am J Hum Genet 77: 556–566.

    Article  PubMed  Google Scholar 

  • Cardoso C, Lutz Y, Mignon C et al. (2000) ATR-X mutations cause impaired nuclear location and altered DNA binding properties of the XNP/ATR-X protein. J Med Genet 37: 746–751.

    Article  PubMed  CAS  Google Scholar 

  • Cheng CH, Lo YH, Liang SS et al. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20: 2067–2081.

    Article  PubMed  Google Scholar 

  • Codina-Pascual M, Navarro J, Oliver-Bonet M et al. (2006) Behaviour of human heterochromatic regions during the synapsis of homologous chromosomes. Hum Reprod 21: 1490–1497.

    Article  PubMed  CAS  Google Scholar 

  • Cohen PE, Pollack SE, Pollard JW (2006) Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 27: 398–426.

    Article  PubMed  CAS  Google Scholar 

  • Cowell IG, Aucott R, Mahadevaiah SK et al. (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111: 22–36.

    Article  PubMed  Google Scholar 

  • Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, Feil R (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26: 720–729.

    Article  PubMed  Google Scholar 

  • Dohmen RJ (2004) SUMO protein modification. Biochim Biophys Acta 1695: 113–131.

    Article  PubMed  Google Scholar 

  • Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18: 2046–2059.

    Article  PubMed  Google Scholar 

  • Govin J, Escoffier E, Rousseaux S et al. (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176: 283–294.

    Article  PubMed  Google Scholar 

  • Haaf T, Steinlein K, Schmid M (1986) Preferential somatic pairing between homologous heterochromatic regions of human chromosomes. Am J Hum Genet 38: 319–329.

    PubMed  CAS  Google Scholar 

  • Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296: 57–63.

    Article  PubMed  Google Scholar 

  • Hari KL, Cook KR, Karpen GH (2001) The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev 15: 1334–1348.

    Article  PubMed  CAS  Google Scholar 

  • Heller CG, Clermont Y (1964) Kinetics of the germinal epithelium in man. Recent Prog Horm Res 20: 545–575.

    PubMed  CAS  Google Scholar 

  • Hooker GW, Roeder GS (2006) A Role for SUMO in meiotic chromosome synapsis. Curr Biol 16: 1238–1243.

    Article  PubMed  Google Scholar 

  • Hoyer-Fender S (2003) Molecular aspects of XY body formation. Cytogenet Genome Res 103: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73: 355–382.

    Article  PubMed  Google Scholar 

  • Jolly C, Vourc’h C, Robert-Nicoud M, Morimoto RI (1999) Intron-independent association of splicing factors with active genes. J Cell Biol 145: 1133–1143.

    Article  PubMed  CAS  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434: 583–589.

    Article  PubMed  Google Scholar 

  • Kourmouli N, Jeppesen P, Mahadevhaiah S et al. (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117: 2491–2501.

    Article  PubMed  Google Scholar 

  • Lange R, Krause W, Engel W (1997) Analyses of meiotic chromosomes in testicular biopsies of infertile patients. Hum Reprod 12: 2154–2158.

    Article  PubMed  CAS  Google Scholar 

  • Lehembre F, Badenhorst P, Müller S, Travers A, Schweisguth F, Dejean A (2000) Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein Smt3 in Drosophila flies. Mol Cell Biol 20: 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  • Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R (2006) Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 8: 407–415.

    Article  PubMed  Google Scholar 

  • Luciani JJ, Depetris D, Usson Y et al. (2006) PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase. J Cell Sci 119: 2518–2531.

    Article  PubMed  Google Scholar 

  • McKee BD, Handel MA (1993) Sex chromosomes, recombination, and chromatin conformation. Chromosoma 102: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F et al. (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31: 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Melchior F, Schergaut M, Pichler A (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem Sci 28: 612–618.

    Article  PubMed  Google Scholar 

  • Metzler-Guillemain C, Usson Y, Mignon C et al. (2000) Organization of the X and Y chromosomes in human, chimpanzee and mouse pachytene nuclei using molecular cytogenetics and three-dimensional confocal analyses. Chromosome Res 8: 571–584.

    Article  PubMed  CAS  Google Scholar 

  • Metzler-Guillemain C, Luciani J, Depetris D, Guichaoua MR, Mattei MG (2003) HP1beta and HP1gamma, but not HP1alpha, decorate the entire XY body during human male meiosis. Chromosome Res 11: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Moens PB, Pearlman RE, Heng HH, Traut W (1998) Chromosome cores and chromatin at meiotic prophase. Curr Top Dev Biol 37: 241–262.

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2: 202–210.

    Article  PubMed  Google Scholar 

  • Nacerddine K, Lehembre F, Bhaumik M et al. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9: 769–779.

    Article  PubMed  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE et al. (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20: 966–976.

    Article  PubMed  Google Scholar 

  • Negorev D, Maul GG (2001) Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot. Oncogene 20: 7234–7242.

    Article  PubMed  CAS  Google Scholar 

  • Nishioka K, Rice JC, Sarma K et al. (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9: 1201–1213.

    Article  PubMed  Google Scholar 

  • Perrin J, Metzler-Guillemain C, Karsenty G, Grillo JM, Mitchell MJ, Guichaoua MR (2006) Meiotic arrest at the midpachytene stage in a patient with complete azoospermia factor b deletion of the Y chromosome. Fertil Steril 85: 494.e5–8.

    Article  Google Scholar 

  • Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120: 1689–1700.

    Article  PubMed  Google Scholar 

  • Rice JC, Nishioka K, Sarma K, Steward R, Reinberg D, Allis CD (2002) Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes. Genes Dev 16: 2225–2230.

    Article  PubMed  Google Scholar 

  • Roeder GS, Bailis JM (2000) The pachytene checkpoint. Trends Genet 16: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Rogers RS, Inselman A, Handel MA, Matunis MJ (2004) SUMO modified proteins localize to the XY body of pachytene spermatocytes. Chromosoma 113: 233–243.

    Article  PubMed  Google Scholar 

  • Roig I, Liebe B, Egozcue J, Cabero L, Garcia M, Scherthan H (2004) Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma 113: 22–33.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252–6258.

    Article  PubMed  CAS  Google Scholar 

  • Sarg B, Helliger W, Talasz H, Koutzamani E, Lindner HH (2004) Histone H4 hyperacetylation precludes histone H4 lysine 20 trimethylation. J Biol Chem 279: 53458–53464.

    Article  PubMed  Google Scholar 

  • Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296: 2176–2178.

    Article  PubMed  Google Scholar 

  • Scherthan H, Eils R, Trelles-Sticken E et al. (1998) Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase. J Cell Sci 111: 2337–2351.

    PubMed  Google Scholar 

  • Schmekel K, Daneholt B (1998) Evidence for close contact between recombination nodules and the central element of the synaptonemal complex. Chromosome Res 6: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K et al. (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–1262.

    Article  PubMed  Google Scholar 

  • Scully R, Chen J, Plug A et al. (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88: 265–275.

    Article  PubMed  CAS  Google Scholar 

  • Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4: 690–699.

    Article  PubMed  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Nat Acad Sci U S A 100: 13225–13230.

    Article  Google Scholar 

  • Shin JA, Choi ES, Kim HS et al. (2005) SUMO modification is involved in the maintenance of heterochromatin stability in fission yeast. Mol Cell 19: 817–828.

    Article  PubMed  Google Scholar 

  • Solari AJ (1974) The behaviour of the XY pair in mammals. Int Rev Cytol 38: 273–317.

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1980) Synaptosomal complexes and associated structures in microspread human spermatocytes. Chromosoma 81: 315–337.

    Article  PubMed  CAS  Google Scholar 

  • Solari AJ (1999) Synaptonemal complex analysis in human male infertility. Eur J Histochem 43: 265–276.

    PubMed  CAS  Google Scholar 

  • Solari AJ, Ponzio R, Rey Valzacchi G (1991) Synaptonemal complex karyotyping in an oligospermic patient with heterochromatin duplication in chromosome n.9. Medicina (B Aires) 51: 217–221.

    CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Greene C, Turek PJ, Ko E, Rademaker A, Martin RH (2005) Immunofluorescent synaptonemal complex analysis in azoospermic men. Cytogenet Genome Res 111: 366–370.

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Turek P, Greene C, Ko E, Rademaker A, Martin RH (2007) Abnormal progression through meiosis in men with nonobstructive azoospermia. Fertil Steril 87: 565–571.

    Article  PubMed  Google Scholar 

  • Sung MT, Dixon GH (1970) Modification of histones during spermiogenesis in trout: a molecular mechanism for altering histone binding to DNA. Proc Nat Acad Sci U S A 67: 616–623.

    Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, et al. (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37: 41–47.

    PubMed  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA et al. (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122: 1008–1022.

    Article  PubMed  Google Scholar 

  • Vafa O, Sullivan KF (1997) Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol 7: 897–900.

    Article  PubMed  CAS  Google Scholar 

  • Vigodner M, Morris PL (2005) Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev Biol 282: 480–492

    Article  PubMed  Google Scholar 

  • Vigodner M, Ishikawa T, Schlegel PN, Morris PL (2006) SUMO-1, human male germ cell development, and the androgen receptor in the testis of men with normal and abnormal spermatogenesis. Am J Physiol Endocrinol Metab 290: E1022–1033.

    Article  PubMed  Google Scholar 

  • Yeh ET, Gong L, Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248: 1–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Genevieve Mattei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metzler-Guillemain, C., Depetris, D., Luciani, J.J. et al. In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Res 16, 761–782 (2008). https://doi.org/10.1007/s10577-008-1225-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-1225-7

Key words

Navigation