Skip to main content
Log in

C. elegans dosage compensation: A window into mechanisms of domain-scale gene regulation

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The C. elegans dosage compensation complex (DCC) reduces transcript levels from each of the two hermaphrodite X chromosomes to equalize X-linked gene expression to that of XO males. Several of the proteins that comprise the DCC are homologous to subunits of the evolutionarily conserved condensin complexes, which in most organisms function in mitotic and meiotic chromosome condensation. These include the DCC subunits MIX-1 and DPY-27, which belong to the structural maintenance of chromosomes (SMC) family of proteins. Several of the C. elegans DCC subunits also perform double duty as members of the canonical meiotic and mitotic condensin complexes. Here, we review what is known about the C. elegans DCC and how study of this model might shed light on general mechanisms of domain-scale transcriptional regulation. We discuss how condensin-like complexes may be targeted to specific chromosomal locations for performance of their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ChIP:

chromatin immunoprecipitation

COMPASS:

complex of proteins associated with Set1

DCC:

dosage compensation complex

HEAT:

Huntingtin, Elongation Factor 3, PR65/A, TOR

rex :

recruitment element on X

SMC:

structural maintenance of chromosomes

References

  • Alekseyenko AA, Peng S, Larschan E et al (2008) A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 134:599–609

    Article  PubMed  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Bausch C, Noone S, Henry JM et al (2007) Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol Cell Biol 27:8522–8532

    Article  PubMed  CAS  Google Scholar 

  • Beenders B, Watrin E, Legagneux V, Kireev I, Bellini M (2003) Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res 11:549–564

    Article  PubMed  CAS  Google Scholar 

  • Bhalla N, Biggins S, Murray AW (2002) Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol Biol Cell 13:632–645

    Article  PubMed  CAS  Google Scholar 

  • Blewitt ME, Gendrel AV, Pang Z et al (2008) SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat Genet 40:663–9

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  PubMed  CAS  Google Scholar 

  • Cabello OA, Eliseeva E, He WG et al (2001) Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell 12:3527–3537

    PubMed  CAS  Google Scholar 

  • Chu DS, Dawes HE, Lieb JD, Chan RC, Kuo AF, Meyer BJ (2002) A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev 16:796–805

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, Albertson DG, Meyer BJ (1994) DPY-27:a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–474

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, Lieb JD, Meyer BJ (1996) Sex-specific assembly of a dosage compensation complex on the nematode X chromosome. Science 274:1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Nasmyth K (2000) Cohesin’s binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5:243–254

    Article  PubMed  CAS  Google Scholar 

  • Cobbe N, Savvidou E, Heck MM (2006) Diverse mitotic and interphase functions of condensins in Drosophila. Genetics 172:991–1008

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, McDonel P, Meyer BJ (2004) Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science 303:1182–1185

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Collette K, Spahl K, Carey J, Snyder M, Petty E, Patel U, Tabuchi T, Liu H, McLeod I, Thompson J, Sarkesik A, Yates J, Meyer BJ, Hagstrom K (2008) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol Epub. PMID: 19119011

  • D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227

    Article  PubMed  CAS  Google Scholar 

  • Davis TL, Meyer BJ (1997) SDC-3 coordinates the assembly of a dosage compensation complex on the nematode X chromosome. Development 124:1019–1031

    PubMed  CAS  Google Scholar 

  • Dawes HE, Berlin DS, Lapidus DM, Nusbaum C, Davis TL, Meyer BJ (1999) Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science 284:1800–1804

    Article  PubMed  CAS  Google Scholar 

  • Dej KJ, Ahn C, Orr-Weaver TL (2004) Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics 168:895–906

    Article  PubMed  CAS  Google Scholar 

  • DeLong L, Casson LP, Meyer BJ (1987) Assessment of X chromosome dosage compensation in Caenorhabditis elegans by phenotypic analysis of lin-14. Genetics 117:657–670

    PubMed  CAS  Google Scholar 

  • DeLong L, Plenefisch JD, Klein RD, Meyer BJ (1993) Feedback control of sex determination by dosage compensation revealed through Caenorhabditis elegans sdc-3 mutations. Genetics 133:875–896

    PubMed  CAS  Google Scholar 

  • Dorsett D (2009) Cohesin, gene expression and development: lessons from Drosophila. doi:10.1007/s10577-009-9021-6

  • Ercan S, Giresi PG, Whittle CM, Zhang X, Green RD, Lieb JD (2007) X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nat Genet 39:403–408

    Article  PubMed  CAS  Google Scholar 

  • Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824

    Article  PubMed  CAS  Google Scholar 

  • Gilfillan GD, Konig C, Dahlsveen IK et al (2007) Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. Nucleic Acids Res 35:3561–3572

    Article  PubMed  CAS  Google Scholar 

  • Glynn EF, Megee PC, Yu HG et al (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  PubMed  Google Scholar 

  • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    Article  PubMed  CAS  Google Scholar 

  • Handwerger KE, Gall JG (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol 16:19–26

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin J (1980) More sex-determination mutants of Caenorhabditis elegans. Genetics 96:649–664

    PubMed  CAS  Google Scholar 

  • Hodgkin JA, Brenner S (1977) Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86:275–287

    PubMed  CAS  Google Scholar 

  • Hsu DR, Meyer BJ (1994) The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery. Genetics 137:999–1018

    PubMed  CAS  Google Scholar 

  • Hsu DR, Chuang PT, Meyer BJ (1995) DPY-30, a nuclear protein essential early in embryogenesis for Caenorhabditis elegans dosage compensation. Development 121:3323–3334

    PubMed  CAS  Google Scholar 

  • Johzuka K, Horiuchi T (2007) RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes Cells 12:759–771

    PubMed  CAS  Google Scholar 

  • Kimura K, Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90:625–634

    Article  PubMed  CAS  Google Scholar 

  • Klein RD, Meyer BJ (1993) Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell 72:349–364

    Article  PubMed  CAS  Google Scholar 

  • Komura J, Ono T (2005) Disappearance of nucleosome positioning in mitotic chromatin in vivo. J Biol Chem 280:14530–14535

    Article  PubMed  CAS  Google Scholar 

  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905

    Article  PubMed  CAS  Google Scholar 

  • Lengronne A, Katou Y, Mori S et al (2004) Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430:573–578

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Capowski EE, Meneely P, Meyer BJ (1996) DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode. Science 274:1732–1736

    Article  PubMed  CAS  Google Scholar 

  • Lieb JD, Albrecht MR, Chuang PT, Meyer BJ (1998) MIX-1: an essential component of the C. elegans mitotic machinery executes X chromosome dosage compensation. Cell 92:265–277

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Lee CK, Granek JA, Clarke ND, Lieb JD (2006) Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res 16:1517–1528

    Article  PubMed  CAS  Google Scholar 

  • Longworth MS, Herr A, Ji JY, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the Condensin II protein dCAP-D3. Genes Dev 22:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi JC (1998) Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr Opin Genet Dev 8:179–184

    Article  PubMed  CAS  Google Scholar 

  • Lupo R, Breiling A, Bianchi ME, Orlando V (2001) Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol Cell 7:127–136

    Article  PubMed  CAS  Google Scholar 

  • Machin F, Paschos K, Jarmuz A, Torres-Rosell J, Pade C, Aragon L (2004) Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr Biol 14:125–130

    PubMed  CAS  Google Scholar 

  • McDonel P, Jans J, Peterson BK, Meyer BJ (2006) Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature 444:614–618

    Article  PubMed  CAS  Google Scholar 

  • Meneely PM, Wood WB (1984) An autosomal gene that affects X chromosome expression and sex determination in Caenorhabditis elegans. Genetics 106:29–44

    PubMed  CAS  Google Scholar 

  • Meneely PM, Wood WB (1987) Genetic analysis of X-chromosome dosage compensation in Caenorhabditis elegans. Genetics 117:25–41

    PubMed  CAS  Google Scholar 

  • Meyer BJ, Casson LP (1986) Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881

    Article  PubMed  CAS  Google Scholar 

  • Miller T, Krogan NJ, Dover J et al (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98:12902–12907

    Article  PubMed  CAS  Google Scholar 

  • Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML (2002) A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A 99:90–94

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum C, Meyer BJ (1989) The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals. Genetics 122:579–593

    PubMed  CAS  Google Scholar 

  • Onn I, Aono N, Hirano M, Hirano T (2007) Reconstitution and subunit geometry of human condensin complexes. EMBO J 26:1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  PubMed  CAS  Google Scholar 

  • Parvin JD, Sharp PA (1993) DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540

    Article  PubMed  CAS  Google Scholar 

  • Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4:502–508

    Article  PubMed  CAS  Google Scholar 

  • Plenefisch JD, DeLong L, Meyer BJ (1989) Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics 121:57–76

    PubMed  CAS  Google Scholar 

  • Shilatifard A (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20:341–348

    Article  PubMed  CAS  Google Scholar 

  • Simonet T, Dulermo R, Schott S, Palladino F (2007) Antagonistic functions of SET-2/SET1 and HPL/HP1 proteins in C. elegans development. Dev Biol 312:367–383

    Article  PubMed  CAS  Google Scholar 

  • Smith ER, Allis CD, Lucchesi JC (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J Biol Chem 276:31483–31486

    Article  PubMed  CAS  Google Scholar 

  • Straub T, Becker PB (2007) Dosage compensation: the beginning and end of generalization. Nat Rev Genet 8:47–57

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Tanaka H, Iguchi N et al (2004) Rosbin: a novel homeobox-like protein gene expressed exclusively in round spermatids. Biol Reprod 70:1485–1492

    Article  PubMed  CAS  Google Scholar 

  • Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647

    PubMed  CAS  Google Scholar 

  • Trent C, Purnell B, Gavinski S, Hageman J, Chamblin C, Wood WB (1991) Sex-specific transcriptional regulation of the C. elegans sex-determining gene her-1. Mech Dev 34:43–55

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Mets DG, Albrecht MR, Nix P, Chan A, Meyer BJ (2008) Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev 22:194–211

    Article  PubMed  CAS  Google Scholar 

  • Tsang CK, Li H, Zheng XS (2007a) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26:448–458

    Article  PubMed  CAS  Google Scholar 

  • Tsang CK, Wei Y, Zheng XF (2007b) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218

    PubMed  CAS  Google Scholar 

  • Uzbekov R, Timirbulatova E, Watrin E et al (2003) Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells. J Cell Sci 116:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Vermeulen M, Mulder KW, Denissov S et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve AM, Meyer BJ (1987) sdc-1: a link between sex determination and dosage compensation in C. elegans. Cell 48:25–37

    Article  PubMed  CAS  Google Scholar 

  • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225

    Article  PubMed  CAS  Google Scholar 

  • Wang BD, Butylin P, Strunnikov A (2006) Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell Cycle 5:2260–2267

    PubMed  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN et al (2005) Mechanism of hsp70i gene bookmarking. Science 307:421–423

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Leung CG, Lee DC, Kennedy BK, Crispino JD (2006) MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia 20:1261–1269

    Article  PubMed  CAS  Google Scholar 

  • Yonker SA, Meyer BJ (2003) Recruitment of C. elegans dosage compensation proteins for gene-specific versus chromosome-wide repression. Development 130:6519–6532

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Sevinc Ercan is supported by National Institutes of Health under Ruth L. Kirschstein National Research Service Award GM084471.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevinc Ercan.

Additional information

Responsible Editor: Christian Haering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercan, S., Lieb, J.D. C. elegans dosage compensation: A window into mechanisms of domain-scale gene regulation. Chromosome Res 17, 215–227 (2009). https://doi.org/10.1007/s10577-008-9011-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9011-0

Keywords

Navigation