Skip to main content

Advertisement

Log in

Invadopodia: Specialized Cell Structures for Cancer Invasion

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The spread of cancer cells to distant sites in the body is the major cause of cancer patient death. Growing evidence connects specialized subcellular structures, invadopodia, to cancer invasion and metastasis. Invadopodia, or invasive foot processes, are actin-rich protrusions that localize matrix-degrading activity to cell-substratum contact points and represent sites where cell signaling, proteolytic, adhesive, cytoskeletal, and membrane trafficking pathways physically converge. Understanding how invadopodia form and function should aid in the identification of novel targets for anti-invasive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADAM:

a disintegrin and metalloproteinase

ECM:

extracellular matrix

ERK:

extracellular signal-regulated kinase

FAK:

focal adhesion kinase

MMP:

matrix metalloproteinase

N-WASp:

Neural Wiskott-Aldrich Syndrome Protein

Tks5/FISH:

Tyrosine kinase substrate 5/Five SH3 domains

WASp:

Wiskott-Aldrich Syndrome Protein

WAVE:

WASp-family Verprolin-homologous protein

References

  1. Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol 5(8):647–657

    Article  PubMed  CAS  Google Scholar 

  2. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13(7):376–385

    Article  PubMed  CAS  Google Scholar 

  3. Bowden ET, Coopman PJ, Mueller SC (2001) Invadopodia: unique methods for measurement of extracellular matrix degradation in vitro. Methods Cell Biol 63:613–627

    Article  PubMed  CAS  Google Scholar 

  4. Linder S, Kopp P (2005) Podosomes at a glance. J Cell Sci 118(Pt 10):2079–2082

    Article  PubMed  CAS  Google Scholar 

  5. Coopman PJ, Do MT, Thompson EW, etal (1998) Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. Clin Cancer Res 4(2):507–515

    PubMed  CAS  Google Scholar 

  6. Thompson EW, Paik S, Brunner N, etal (1992) Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150(3):534–544

    Article  PubMed  CAS  Google Scholar 

  7. Bowden ET, Barth M, Thomas D, etal (1999) An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18(31):4440–4449

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17(5):559–564

    Article  PubMed  CAS  Google Scholar 

  9. Baldassarre M, Pompeo A, Beznoussenko G, etal (2003) Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 14(3):1074–1084

    Article  PubMed  CAS  Google Scholar 

  10. Monsky WL, Lin CY, Aoyama A, etal (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54(21):5702–5710

    PubMed  CAS  Google Scholar 

  11. Nakahara H, Howard L, Thompson EW, etal (1997) Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA 94(15):7959–7964

    Article  PubMed  CAS  Google Scholar 

  12. Mueller SC, Ghersi G, Akiyama SK, etal (1999) A novel protease-docking function of integrin at invadopodia. J Biol Chem 274(35):24947–24952

    Article  PubMed  CAS  Google Scholar 

  13. Deryugina EI, Ratnikov B, Monosov E, etal (2001) MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res 263(2):209–223

    Article  PubMed  CAS  Google Scholar 

  14. Bourguignon LY, Zhu H, Shao L, etal (2001) CD44 interaction with c-src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276(10):7327–7336

    Article  PubMed  CAS  Google Scholar 

  15. Sabeh F, Ota I, Holmbeck K, etal (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167(4):769–781

    Article  PubMed  CAS  Google Scholar 

  16. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, etal (2006) Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res 66(6):3034–3043

    Article  PubMed  CAS  Google Scholar 

  17. Moss ML, Lambert MH (2002) Shedding of membrane proteins by ADAM family proteases. Essays Biochem 38:141–153

    PubMed  CAS  Google Scholar 

  18. Abram CL, Seals DF, Pass I, etal (2003) The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of src-transformed cells. J Biol Chem 278(19):16844–16851

    Article  PubMed  CAS  Google Scholar 

  19. Seals DF, Azucena EF, Jr., Pass I, etal (2005) The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7(2):155–165

    Google Scholar 

  20. David-Pfeuty T, Singer SJ (1980) Altered distributions of the cytoskeletal proteins vinculin and alpha-actinin in cultured fibroblasts transformed by Rous sarcoma virus. Proc Natl Acad Sci USA 77(11):6687–6691

    Article  PubMed  CAS  Google Scholar 

  21. Chen WT, Olden K, Bernard BA, etal (1984) Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J Cell Biol 98(4):1546–1555

    Article  PubMed  CAS  Google Scholar 

  22. Chen WT, Chen JM, Parsons SJ, etal (1985) Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature 316(6024):156–158

    Article  PubMed  CAS  Google Scholar 

  23. Brandt D, Gimona M, Hillmann M, etal (2002) Protein kinase C induces actin reorganization via a src- and rho-dependent pathway. J Biol Chem 277(23):20903–20910

    Article  PubMed  CAS  Google Scholar 

  24. Spinardi L, Rietdorf J, Nitsch L, etal (2004) A dynamic podosome-like structure of epithelial cells. Exp Cell Res 295(2):360–374

    Article  PubMed  CAS  Google Scholar 

  25. Frame MC, Fincham VJ, Carragher NO, etal (2002) v-Src's hold over actin and cell adhesions. Nat Rev Mol Cell Biol 3(4):233–245

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi H, Lorenz M, Kempiak S, etal (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168(3):441–452

    Article  PubMed  CAS  Google Scholar 

  27. Onodera Y, Hashimoto S, Hashimoto A, etal (2005) Expression of AMAP1, an ArfGAP, provides novel targets to inhibit breast cancer invasive activities. Embo J 24(5):963–973

    Article  PubMed  CAS  Google Scholar 

  28. Brabek J, Constancio SS, Shin NY, etal (2004) CAS promotes invasiveness of src-transformed cells. Oncogene 23(44):7406–7415

    Article  PubMed  CAS  Google Scholar 

  29. Mizutani K, Miki H, He H, etal (2002) Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 62(3):669–674

    PubMed  CAS  Google Scholar 

  30. Honda H, Oda H, Nakamoto T, etal (1998) Cardiovascular anomaly, impaired actin bundling and resistance to src- induced transformation in mice lacking p130Cas. Nat Genet 19(4):361–365

    Article  PubMed  CAS  Google Scholar 

  31. Brabek J, Constancio SS, Siesser PF, etal (2005) Crk- associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol Cancer Res 3(6):307–315

    Article  PubMed  CAS  Google Scholar 

  32. Nobes CD, Hall A (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144(6):1235–1244

    Article  PubMed  CAS  Google Scholar 

  33. Ridley AJ, Paterson HF, Johnston CL, etal (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70(3):401–410

    Article  PubMed  CAS  Google Scholar 

  34. Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70(3):389–399

    Article  PubMed  CAS  Google Scholar 

  35. Nakahara H, Otani T, Sasaki T, etal (2003) Involvement of Cdc42 and rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells 8(12):1019–1027

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto S, Onodera Y, Hashimoto A, etal (2004) Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci USA 101(17):6647–6652

    Article  PubMed  CAS  Google Scholar 

  37. Tague SE, Muralidharan V, D'Souza-Schorey C (2004) ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci USA 101(26):9671–9676

    Article  PubMed  CAS  Google Scholar 

  38. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  PubMed  CAS  Google Scholar 

  39. Bryce NS, Clark ES, Leysath JL, etal (2005) Cortactin promotes cell motility by enhancing lamellipodial persistence. Curr Biol 15(14):1276–1285

    Article  PubMed  CAS  Google Scholar 

  40. Innocenti M, Zucconi A, Disanza A, etal (2004) Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol 6(4):319–327

    Article  PubMed  CAS  Google Scholar 

  41. Yamazaki D, Suetsugu S, Miki H, etal (2003) WAVE2 is required for directed cell migration and cardiovascular development. Nature 424(6947):452–456

    Article  PubMed  CAS  Google Scholar 

  42. Yan C, Martinez-Quiles N, Eden S, etal (2003) WAVE2 deficiency reveals distinct roles in embryogenesis and rac-mediated actin-based motility. Embo J 22(14):3602–3612

    Article  PubMed  CAS  Google Scholar 

  43. Lommel S, Benesch S, Rottner K, etal (2001) Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep 2(9):850–857

    Article  PubMed  CAS  Google Scholar 

  44. Snapper SB, Takeshima F, Anton I, etal (2001) N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 3(10):897–904

    Article  PubMed  CAS  Google Scholar 

  45. Wu H, Reynolds AB, Kanner SB, etal (1991) Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Mol Cell Biol 11(10):5113–5124

    PubMed  CAS  Google Scholar 

  46. Martinez-Quiles N, Ho HY, Kirschner MW, etal (2004) Erk/Src phosphorylation of cortactin acts as a switch on–switch off mechanism that controls its ability to activate N-WASP. Mol Cell Biol 24(12):5269–5280

    Article  PubMed  CAS  Google Scholar 

  47. Weaver AM, Karginov AV, Kinley AW, etal (2001) Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol 11(5):370–374

    Article  PubMed  CAS  Google Scholar 

  48. Uruno T, Liu J, Zhang P, etal (2001) Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 3(3):259–266

    Article  PubMed  CAS  Google Scholar 

  49. Zhou S, Webb BA, Eves R, etal (2006) Effects of tyrosine phosphorylation of cortactin on podosome formation in A7r5 vascular smooth muscle cells. Am J Physiol Cell Physiol 290(2):C463–471

    Article  PubMed  CAS  Google Scholar 

  50. Bowden ET, Onikoyi E, Slack R, etal (2006) Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res 312 (8) 1240–1253

    Article  PubMed  CAS  Google Scholar 

  51. Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382(Pt 1):13–25

    PubMed  CAS  Google Scholar 

  52. Chen WT (1989) Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool 251(2):167–185

    Article  PubMed  CAS  Google Scholar 

  53. Chen WT, Wang JY (1999) Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Ann N Y Acad Sci 878:361–371

    Article  PubMed  CAS  Google Scholar 

  54. Evans JG, Correia I, Krasavina O, etal (2003) Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J Cell Biol 161(4):697–705

    Article  PubMed  CAS  Google Scholar 

  55. Ochoa GC, Slepnev VI, Neff L, etal (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150(2):377–389

    Article  PubMed  CAS  Google Scholar 

  56. Tarone G, Cirillo D, Giancotti FG, etal (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp Cell Res 159(1):141–157

    Article  PubMed  CAS  Google Scholar 

  57. Laukaitis CM, Webb DJ, Donais K, etal (2001) Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol 153(7):1427–1440

    Article  PubMed  CAS  Google Scholar 

  58. Webb DJ, Donais K, Whitmore LA, etal (2004) FAK-src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6(2):154–161

    Article  PubMed  CAS  Google Scholar 

  59. McNiven MA, Baldassarre M, Buccione R (2004) The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci 9:1944–1953

    Article  PubMed  CAS  Google Scholar 

  60. Zhang LH, Tian B, Diao LR, etal (2006) Dominant expression of 85-kDa form of cortactin in colorectal cancer. J Cancer Res Clin Oncol 132(2):113–120

    Article  PubMed  Google Scholar 

  61. Wolf K, Mazo I, Leung H, etal (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160(2):267–277

    Article  PubMed  CAS  Google Scholar 

  62. McLean GW, Carragher NO, Avizienyte E, etal (2005) The role of focal-adhesion kinase in cancer—a new therapeutic opportunity. Nat Rev Cancer 5(7):505–515

    Article  PubMed  CAS  Google Scholar 

  63. Duxbury MS, Ito H, Benoit E, etal (2003) RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem Biophys Res Commun 311(3):786–792

    Article  PubMed  CAS  Google Scholar 

  64. Duxbury MS, Ito H, Zinner MJ, etal (2004) Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 135(5):555–562

    Article  PubMed  CAS  Google Scholar 

  65. O'Hare T, Corbin AS, Druker BJ (2006) Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 16(1):92–99

    Article  PubMed  CAS  Google Scholar 

  66. Chen T, George JA, Taylor CC (2006) Src tyrosine kinase as a chemotherapeutic target: is there a clinical case? Anticancer Drugs 17(2):123–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to Drs. Laura Spinardi and Pier Carlo Marchisio for the provision of unpublished data. Thanks also to Dr. Susette Mueller for provision of both an EM image (reprinted from Oncogene) and for sending us journal articles in advance of publication, including Artym et al., Cancer Research, 2006. Apologies are made in advance for studies that were not discussed due to space limitations. This work was supported by NIH K22 CA109590-01 and Vanderbilt Development Funds to AMW. Thanks to Dr. Vito Quaranta for many insightful discussions and to Dr. Lynn Matrisian for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alissa M. Weaver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, A.M. Invadopodia: Specialized Cell Structures for Cancer Invasion. Clin Exp Metastasis 23, 97–105 (2006). https://doi.org/10.1007/s10585-006-9014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9014-1

Keywords

Navigation