Skip to main content

Advertisement

Log in

Soluble cadherins as cancer biomarkers

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Molecular activities, regulating a balanced tissue organisation, are frequently disturbed during cancer progression. These include protein ectodomain shedding, a post-translational process that substantially changes the functional properties of the substrate protein. In comparison with normal epithelia, cancer cells almost invariably show diminished cadherin-mediated intercellular adhesion. This review will address cadherin ectodomain shedding and its functional consequence in normal physiology and in the tumor environment. Soluble cadherin fragments may retain specific biological activities during cancer cell invasion, angiogenesis and perineural invasion. When diffusion barriers disappear, soluble cadherins are detected in sera from cancer patients. Soluble N-(neural) cadherin may represent a novel diagnosis/prognostic biomarker showing a correlation with PSA in sera of prostate cancer patients. Furthermore, therapeutic monitoring in pancreas adenomacarcinoma revealed a correlation between circulating soluble N-cadherin and CA 19-9. A better understanding of cadherin regulation in cancer progression will likely increase our awareness of the importance of the combinatorial signals that regulate tissue integrity and eventually result in the identification of new therapeutics targeting cadherins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  2. Van Aken E, De Wever O, Correia da Rocha AS, Mareel M (2001) Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 439:725–751

    PubMed  Google Scholar 

  3. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  PubMed  CAS  Google Scholar 

  4. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6:32–43

    Article  PubMed  CAS  Google Scholar 

  5. Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30

    Article  PubMed  CAS  Google Scholar 

  6. Levi E, Fridman R, Miao H-Q et al (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci USA 93:7069–7074

    Article  PubMed  CAS  Google Scholar 

  7. Vecchi M, Rudolph-Owen LA, Brown CL et al (1998) Tyrosine phosphorylation and proteolysis. Pervanadate-induced, metalloprotease-dependent cleavage of the ErbB-4 receptor and amphiregulin. J Biol Chem 273:20589–20595

    Article  PubMed  CAS  Google Scholar 

  8. Codony-Servat J, Albanell J, Lopez-Talavera JC et al (1999) Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res 59:1196–1201

    PubMed  CAS  Google Scholar 

  9. Nath D, Williamson NJ, Jarvis R, Murphy G (2001) Shedding of c-Met is regulated by crosstalk between a G-protein coupled receptor and the EGF receptor and is mediated by a TIMP-3 sensitive metalloproteinase. J Cell Sci 114:1213–1220

    PubMed  CAS  Google Scholar 

  10. Cavallaro U et al (2004) N-cadherin as an invasion promoter: a novel target for antitumor therapy? Curr Opin Investig Drugs 5:1274–1278

    PubMed  CAS  Google Scholar 

  11. Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promotor E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118

    PubMed  Google Scholar 

  12. Damsky CH, Richa J, Solter D et al (1983) Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34:455–466

    Article  PubMed  CAS  Google Scholar 

  13. Wheelock MJ, Buck CA, Bechtol KB, Damsky CH (1987) Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J Cell Biochem 34:187–202

    Article  PubMed  CAS  Google Scholar 

  14. Symowicz J, Adley BP, Gleason KJ et al (2007) Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 67:2030–2039

    Article  PubMed  CAS  Google Scholar 

  15. Davies G, Jiang WG, Mason MD (2001) Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res 7:3289–3297

    PubMed  CAS  Google Scholar 

  16. Ryniers F, Stove C, Goethals M et al (2002) Plasmin produces an E-cadherin fragment that stimulates cancer cell invasion. Biol Chem 383:159–165

    Article  PubMed  CAS  Google Scholar 

  17. Hayashido Y, Hamana T, Yoshioka Y et al (2005) Plasminogen activator/plasmin system suppresses cell-cell adhesion of oral squamous cell carcinoma cells via proteolysis of E-cadherin. Int J Oncol 27:693–698

    PubMed  CAS  Google Scholar 

  18. Johnson SK, Ramani VC, Hennings L, Haun RS (2007) Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 109:1811–1820

    Article  PubMed  CAS  Google Scholar 

  19. Covington MD, Burghardt RC, Parrish AR et al (2006) Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol 290:F43–F51

    Article  PubMed  CAS  Google Scholar 

  20. Maretzky T, Reiss K, Ludwig A et al (2005) ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation. Proc Natl Acad Sci USA 102:9182–9187

    Article  PubMed  CAS  Google Scholar 

  21. Steinhusen U, Weiske J, Badock V et al (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980

    Article  PubMed  CAS  Google Scholar 

  22. Rashid MG, Sanda MG, Vallorosi CJ et al (2001) Posttranslational truncation and inactivation of human E-cadherin distinguishes prostate cancer from matched normal prostate. Cancer Res 61:489–492

    PubMed  CAS  Google Scholar 

  23. Rios-Doria J, Day KC, Kuefer R et al (2003) The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 278:1372–1379

    Article  PubMed  CAS  Google Scholar 

  24. Reiss K, Maretzky T, Ludwig A et al (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β-catenin nuclear signalling. EMBO J 24:742–752

    Article  PubMed  CAS  Google Scholar 

  25. Monea S, Jordan BA, Srivastava S et al (2006) Membrane localization of membrane type 5 matrix metalloproteinase by AMPA receptor binding protein and cleavage of cadherins. J Neurosci 26:2300–2312

    Article  PubMed  CAS  Google Scholar 

  26. Uemura K, Kihara T, Kuzuya A et al (2006) Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett 402:278–283

    Article  PubMed  CAS  Google Scholar 

  27. Paradies NE, Grunwald GB (1993) Purification and characterization of NCAD90, a soluble endogenous form of N-cadherin, which is generated by proteolysis during retinal development and retains adhesive and neurite-promoting function. J Neurosci Res 36:33–45

    Article  PubMed  CAS  Google Scholar 

  28. Marambaud P, Wen PH, Dutt A et al (2003) A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114:635–645

    Article  PubMed  CAS  Google Scholar 

  29. Shoval I, Ludwig A, Kalcheim C (2007) Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134:491–501

    Article  PubMed  CAS  Google Scholar 

  30. Tai C-Y, Mysore SP, Chiu C, Schuman EM (2007) Activity-regulated N-cadherin endocytosis. Neuron 54:771–785

    Article  PubMed  CAS  Google Scholar 

  31. Uemura K, Kuzuya A, Aoyagi N et al (2007) Amyloid β inhibits ectodomain shedding of N-cadherin via down-regulation of cell-surface NMDA receptor. Neuroscience 145:5–10

    Article  PubMed  CAS  Google Scholar 

  32. Noë V, Willems J, Vandekerckhove J et al (1999) Inhibition of adhesion and induction of epithelial cell invasion by HAV-containing E-cadherin-specific peptides. J Cell Sci 112:127–135

    PubMed  Google Scholar 

  33. Nawrocki-Raby B, Gilles C, Polette M et al (2003) Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 105:790–795

    Article  PubMed  CAS  Google Scholar 

  34. Lee KH, Choi EY, Hyun MS et al (2007) Association of extracellular cleavage of E-cadherin mediated by MMP-7 with HGF-induced in vitro invasion in human stomach cancer cells. Eur Surg Res 39:208–215

    Article  PubMed  CAS  Google Scholar 

  35. Derycke L, Morbidelli L, Ziche M et al (2006) Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 23:187–201

    Article  PubMed  CAS  Google Scholar 

  36. De Wever O, Westbroek W, Verloes A et al (2004) Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci 117:4691–4703

    Article  PubMed  CAS  Google Scholar 

  37. Utton MA, Eickholt B, Howell FV et al (2001) Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells. J Neurochem 76:1421–1430

    Article  PubMed  CAS  Google Scholar 

  38. Cifuentes-Diaz C, Nicolet M, Goudou D et al (1994) N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier. Development 120:1–11

    PubMed  CAS  Google Scholar 

  39. Whittard JD, Craig SE, Mould AP et al (2002) E-cadherin is a ligand for integrin α2ß1. Matrix Biol 21:525–532

    Article  PubMed  CAS  Google Scholar 

  40. De Wever O, Mareel M (2006) Pro-invasive molecular cross-signaling between cancer cells and myofibroblasts. In: Chaponnier C, Desmoulière A, Gabbiani G (eds) Tissue Repair, Contraction and the Myofibroblast, Chapt. 8. Eurekah.com and Springer Science+Business Media, pp 74–87

  41. De Wever O, Nguyen Q-D, Van Hoorde L et al (2004) Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 18:1016–1018

    PubMed  Google Scholar 

  42. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  43. De Wever O, Mareel M (2002) Role of myofibroblasts at the invasion front. Biol Chem 383:55–67

    Article  PubMed  Google Scholar 

  44. Poulsom R, Pignatelli M, Stetler-Stevenson WG et al (1992) Stromal expression of 72 kDa type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 141:389–396

    PubMed  CAS  Google Scholar 

  45. Pyke C, Ralfkiaer E, Tryggvason K, Danø K (1993) Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am J Pathol 142:359–365

    PubMed  CAS  Google Scholar 

  46. Shintani Y, Wheelock MJ, Johnson KR (2006) Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells. Mol Biol Cell 17:2963–2975

    Article  PubMed  CAS  Google Scholar 

  47. Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR (2006) Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 66:11745–11753

    Article  PubMed  CAS  Google Scholar 

  48. Koenig A, Mueller C, Hasel C et al (2006) Collagen type I induces disruption of E-cadherin-mediated cell-cell contacts and promotes proliferation of pancreatic carcinoma cells. Cancer Res 66:4662–4671

    Article  PubMed  CAS  Google Scholar 

  49. Navarro P, Ruco L, Dejana E (1998) Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol 140:1475–1484

    Article  PubMed  CAS  Google Scholar 

  50. Gerhardt H, Wolburg H, Redies C (2000) N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  PubMed  CAS  Google Scholar 

  51. Luo Y, Radice GL (2005) N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 169:29–34

    Article  PubMed  CAS  Google Scholar 

  52. Carmeliet P, Lampugnani M-G, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  PubMed  CAS  Google Scholar 

  53. Paik J-H, Skoura A, Chae S-S et al (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18:2392–2403

    Article  PubMed  CAS  Google Scholar 

  54. Harnden P, Shelley MD, Clements H et al (2007) The prognostic significance of perineural invasion in prostatic cancer biopsies. A systematic review. Cancer 109:13–24

    Article  PubMed  Google Scholar 

  55. Ayala GE, Wheeler TM, Shine HD et al (2001) In vitro dorsal root ganglia and human prostate cell line interaction: redefining perineural invasion in prostate cancer. Prostate 49:213–223

    Article  PubMed  CAS  Google Scholar 

  56. Ayala GE, Dai H, Ittmann M et al (2004) Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res 64:6082–6090

    Article  PubMed  CAS  Google Scholar 

  57. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455

    Article  PubMed  CAS  Google Scholar 

  58. Tran NL, Adams DG, Vaillancourt RR, Heimark RL (2002) Signal Transduction from N-cadherin Increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 277:32905–32914

    Article  PubMed  CAS  Google Scholar 

  59. Ayala GE, Dai H, Tahir SA et al (2006) Stromal antiapoptotic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res 66:5159–5164

    Article  PubMed  CAS  Google Scholar 

  60. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314

    Article  PubMed  CAS  Google Scholar 

  61. Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  PubMed  CAS  Google Scholar 

  62. Rodrigues S, De Wever O, Bruyneel E et al (2007) Opposing roles of netrin-1 and the dependence receptor DCC in cancer cell invasion, tumor growth and metastasis. Oncogene 26:5615–5625

    Article  PubMed  CAS  Google Scholar 

  63. Giordano S, Corso S, Conrotto P et al (2002) The Semaphorin 4D receptor controls invasive growth by coupling with Met. Nat Cell Biol 4:720–724

    Article  PubMed  CAS  Google Scholar 

  64. Cornell RJ, Rowley D, Wheeler T et al (2003) Neuroepithelial interactions in prostate cancer are enhanced in the presence ofprostatic stroma. Urology 61:870–875

    Article  PubMed  Google Scholar 

  65. Dalton WS, Friend SH (2006) Cancer biomarkers - an invitation to the table. Science 312:1165–1168

    Article  PubMed  CAS  Google Scholar 

  66. Joensuu H, Anttonen A, Eriksson M et al (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62:5210–5217

    PubMed  CAS  Google Scholar 

  67. Seidel C, Sundan A, Hjorth M et al (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95:388–392

    PubMed  CAS  Google Scholar 

  68. Tartour E, Mosseri V, Jouffroy T et al (2001) Serum soluble interleukin-2 receptor concentrations as an independent prognostic marker in head and neck cancer. Lancet 357:1263–1264

    Article  PubMed  CAS  Google Scholar 

  69. Witkowska AM (2005) On the role of sIL-2R measurements in rheumatoid arthritis and cancers. Mediators Inflamm 2005:121–130

    Article  PubMed  CAS  Google Scholar 

  70. Chan AOO, Lam SK, Chu KM et al (2001) Soluble E-cadherin is a valid prognostic marker in gastric carcinoma. Gut 48:808–811

    Article  PubMed  CAS  Google Scholar 

  71. Velikova G, Banks RE, Gearing A et al (1997) Circulating soluble adhesion molecules E-cadherin, E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in patients with gastric cancer. Br J Cancer 76:1398–1404

    PubMed  CAS  Google Scholar 

  72. Gofuku J, Shiozaki H, Doki Y et al (1998) Characterization of soluble E-cadherin as a disease marker in gastric cancer patients. Br J Cancer 78:1095–1101

    PubMed  CAS  Google Scholar 

  73. Chan AO-O, Chu K-M, Lam S-K et al (2003) Soluble E-cadherin is an independent pretherapeutic factor for long-term survival in gastric cancer. J Clin Oncol 21:2288–2293

    Article  PubMed  CAS  Google Scholar 

  74. Juhasz M, Ebert MPA, Schulz HU et al (2003) Dual role of serum soluble E-cadherin as a biological marker of metastatic development in gastric cancer. Scand J Gastroenterol 38:850–855

    Article  PubMed  CAS  Google Scholar 

  75. Chan AOO, Chu K-M, Lam SK et al (2005) Early prediction of tumor recurrence after curative resection of gastric carcinoma by measuring soluble E-cadherin. Cancer 104:740–746

    Article  PubMed  CAS  Google Scholar 

  76. Griffiths TRL, Brotherick I, Bishop RI et al (1996) Cell adhesion molecules in bladder cancer: soluble serum E-cadherin correlates with predictors of recurrence. Br J Cancer 74:579–584

    PubMed  CAS  Google Scholar 

  77. Durkan GC, Brotherick I, Mellon JK (1999) The impact of transurethral resection of bladder tumour on serum levels of soluble E-cadherin. BJU Int 83:424–428

    Article  PubMed  CAS  Google Scholar 

  78. Matsumoto K, Shariat SF, Casella R et al (2003) Preoperative plasma soluble E-cadherin predicts metastases to lymph nodes and prognosis in patients undergoing radical cystectomy. J Urol 170:2248–2252

    Article  PubMed  CAS  Google Scholar 

  79. Kuefer R, Hofer MD, Gschwend JE et al (2003) The role of an 80 kDa fragment of E-cadherin in the metastatic progression of prostate cancer. Clin Cancer Res 9:6447–6452

    PubMed  CAS  Google Scholar 

  80. Kuefer R, Hofer MD, Zorn CSM et al (2005) Assessment of a fragment of e-cadherin as a serum biomarker with predictive value for prostate cancer. Br J Cancer 92:2018–2023

    Article  PubMed  CAS  Google Scholar 

  81. Gadducci A, Ferdeghini M, Cosio S et al (1999) Preoperative serum E-cadherin assay in patients with ovarian carcinoma. Anticancer Res 19:769–772

    PubMed  CAS  Google Scholar 

  82. Velikova G, Banks RE, Gearing A et al (1998) Serum concentrations of soluble adhesion molecules in patients with colorectal cancer. Br J Cancer 77:1857–1863

    PubMed  CAS  Google Scholar 

  83. Wilmanns C, Grossmann J, Steinhauer S et al (2004) Soluble serum E-cadherin as a marker of tumour progression in colorectal cancer patients. Clin Exp Metastasis 21:75–78

    Article  PubMed  CAS  Google Scholar 

  84. Shirahama S, Furukawa F, Wakita H, Takigawa M (1996) E- and P-cadherin expression in tumor tissues and soluble E-cadherin levels in sera of patients with skin cancer. J Dermatol Sci 13:30–36

    Article  PubMed  CAS  Google Scholar 

  85. Billion K, Ibrahim H, Mauch C, Niessen CM (2006) Increased soluble E-cadherin in melanoma patients. Skin Pharmacol Physiol 19:65–70

    Article  PubMed  CAS  Google Scholar 

  86. Charalabopoulos K, Gogali A, Dalavaga Y et al (2006) The clinical significance of soluble E-cadherin in nonsmall cell lung cancer. Exp Oncol 28:83–85

    PubMed  CAS  Google Scholar 

  87. Banks RE, Porter WH, Whelan P et al (1995) Soluble forms of the adhesion molecule E-cadherin in urine. J Clin Pathol 48:179–180

    Article  PubMed  CAS  Google Scholar 

  88. Protheroe AS, Banks RE, Mzimba M et al (1999) Urinary concentrations of the soluble adhesion molecule E-cadherin and total protein in patients with bladder cancer. Br J Cancer 80:273–278

    Article  PubMed  CAS  Google Scholar 

  89. Daraï E, Bringuier A-F, Walker-Combrouze F et al (1998) Soluble adhesion molecules in serum and cyst fluid from patients with cystic tumours of the ovary. Hum Reprod 13:2831–2835

    Article  PubMed  Google Scholar 

  90. Sundfeldt K, Ivarsson K, Rask K et al (2001) Higher levels of soluble E-cadherin in cyst fluid from malignant ovarian tumours than in benign cysts. Anticancer Res 21:65–70

    PubMed  CAS  Google Scholar 

  91. Knudsen KA, Lin CY, Johnson KR et al (2000) Lack of correlation between serum levels of E- and P-cadherin fragments and the presence of breast cancer. Hum Pathol 31:961–965

    Article  PubMed  CAS  Google Scholar 

  92. Sulkowska M, Famulski W, Wincewicz A et al (2006) Levels of VE-cadherin increase independently of VEGF in preoperative sera of patients with colorectal cancer. Tumori 92:67–71

    PubMed  CAS  Google Scholar 

  93. Derycke L, De Wever O, Stove V et al (2006) Soluble N-cadherin in human biological fluids. Int J Cancer 119:2895–2900

    Article  PubMed  CAS  Google Scholar 

  94. Pittard AJ, Banks RE, Galley HF, Webster NR (1996) Soluble E-cadherin concentrations in patients with systemic inflammatory response syndrome and multiorgan dysfunction syndrome. Br J Anaesth 76:629–631

    PubMed  CAS  Google Scholar 

  95. Soler AP, Russo J, Russo IH, Knudsen KA (2002) Soluble fragment of P-cadherin adhesion protein found in human milk. J Cell Biochem 85:180–184

    Article  PubMed  CAS  Google Scholar 

  96. De Paul AL, Bonaterra M, Soler AP et al (2005) Soluble P-cadherin found in human semen. J Androl 26:44–47

    PubMed  Google Scholar 

  97. Soeki T, Tamura Y, Shinohara H et al (2004) Elevated concentration of soluble vascular endothelial cadherin is associated with coronary atherosclerosis. Circ J 68:1–5

    Article  PubMed  CAS  Google Scholar 

  98. Lafky JM, Baron AT, Cora EM et al (2005) Serum soluble epidermal growth factor receptor concentrations decrease in postmenopausal metastatic breast cancer patients treated with letrozole. Cancer Res 65:3059–3062

    PubMed  CAS  Google Scholar 

  99. Derycke LDM, Bracke ME (2004) N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 48:463–476

    Article  PubMed  CAS  Google Scholar 

  100. Zhang B, Groffen J, Heisterkamp N (2007) Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells. Leukemia 21:1189–1197

    Article  PubMed  CAS  Google Scholar 

  101. Hulit J, Suyama K, Chung S et al (2007) N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 67:3106–3116

    Article  PubMed  CAS  Google Scholar 

  102. Williams E, Williams G, Gour BJ et al (2000) A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J Biol Chem 275:4007–4012

    Article  PubMed  CAS  Google Scholar 

  103. Williams G, Williams E-J, Doherty P (2002) Dimeric versions of two short N-cadherin binding motifs (HAVDI and INPISG) function as N-cadherin agonists. J Biol Chem 277:4361–4367

    Article  PubMed  CAS  Google Scholar 

  104. Mariotti A, Perotti A, Sessa C, Rüegg C (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16:451–465

    Article  PubMed  CAS  Google Scholar 

  105. Tomita K, van Bokhoven A, van Leenders GJLH et al (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654

    PubMed  CAS  Google Scholar 

  106. Lee DM, Kiener HP, Agarwal SK et al (2007) Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315:1006–1010

    Article  PubMed  CAS  Google Scholar 

  107. Williams E-J, Williams G, Howell FV et al (2001) Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 276:43879–43886

    Article  PubMed  CAS  Google Scholar 

  108. Kim J-B, Islam S, Kim YJ et al (2000) N-Cadherin extracellular repeat 4 mediates epithelial to mesenchymal transition and increased motility. J Cell Biol 151:1193–1206

    Article  PubMed  CAS  Google Scholar 

  109. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  CAS  Google Scholar 

  110. Thiele A, Thormann M, Hofmann H-J et al (2000) A possible role of N-cadherin in thalidomide teratogenicity. Life Sci 67:457–461

    Article  PubMed  CAS  Google Scholar 

  111. Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35:155–162

    Article  PubMed  CAS  Google Scholar 

  112. Gupta D, Treon SP, Shima Y et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961

    PubMed  CAS  Google Scholar 

  113. Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238

    Article  PubMed  CAS  Google Scholar 

  114. Bagnato A, Rosanò L, Spinella F et al (2004) Endothelin B receptor blockade inhibits dynamics of cell interactions and communications in melanoma cell progression. Cancer Res 64:1436–1443

    Article  PubMed  CAS  Google Scholar 

  115. Yang Y-a, Dukhanina O, Tang B et al (2002) Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    PubMed  Google Scholar 

  116. Muraoka RS, Dumont N, Ritter CA et al (2002) Blockade of TGF-ß inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    PubMed  CAS  Google Scholar 

  117. Won J, Kim H, Park EJ et al (1999) Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor β receptor therapy. Cancer Res 59:1273–1277

    PubMed  CAS  Google Scholar 

  118. Inman GJ, Nicolás FJ, Callahan JF et al (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  PubMed  CAS  Google Scholar 

  119. Laping NJ, Grygielko E, Mathur A et al (2002) Inhibition of transforming growth factor (TGF)-ß1-induced extracellular matrix with a novel inhibitor of the TGF-ß type I receptor kinase activity: SB-431542. Mol Pharmacol 62:58–64

    Article  PubMed  CAS  Google Scholar 

  120. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S et al (2004) SB-431542, a small molecule transforming growth factor-β-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3:737–745

    PubMed  CAS  Google Scholar 

  121. Matsuyama S, Iwadate M, Kondo M et al (2003) SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Res 63:7791–7798

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

G. De Bruyne and J. Roels are gratefully acknowledged for preparation of the illustrations. This work was funded by Fonds Wetenschappelijk Onderzoek (FWO)-Vlaanderen (Brussels, Belgium), Geconcerteerde Onderzoek Aangelegenheden (GOA, University Ghent, Belgium) and by the Sixth Framework program of the European Community (METABRE, LSHC-CT-2004-503049). O. De Wever was supported by METABRE and Bijzonder Onderzoeks Fonds (BOF, University Ghent, Belgium). L. Derycke was supported by FYTOES (Federale Overheidsdienst Volksgezondheid, Veiligheid voor de Voedselketen en Leefmilieu, Brussels, Belgium). A. Hendrix was supported by a fellowship from the ‘Stichting Emmanuel van der Schueren’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Bracke.

Additional information

Olivier De Wever and Lara Derycke have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Wever, O., Derycke, L., Hendrix, A. et al. Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 24, 685–697 (2007). https://doi.org/10.1007/s10585-007-9104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9104-8

Keywords

Navigation