Skip to main content

Advertisement

Log in

New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The currently prevailing ideas that set out to explain the process of metastasis are largely based on observations made on the total tumor cell population, and often focus on tumor-intrinsic properties. The clinical observation that particular tumor types show a predilection to metastasize to particular organs has been understood in terms of Paget’s “Seed and Soil” hypothesis, but a definition of the molecular basis for the “Seed and Soil” hypothesis is at best only partial. Recent ideas about the cellular basis of tumor growth (cancer stem cells) and the remote establishment by primary tumors of special permissive microenvironments in target organs prior to metastasis (pre-metastatic niches) have the potential to radically change our view of the metastatic process. In this review we examine these new concepts with a particular emphasis on findings made in the context of breast cancer, and compare these concepts with ideas based on studies using the total tumor cell population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sleeman JP (2000) The lymph node as a bridgehead in the metastatic dissemination of tumors. Recent Results Cancer Res 157:55–81

    PubMed  CAS  Google Scholar 

  2. Fidler IJ (2002) Critical determinants of metastasis. Semin Cancer Biol 12:89–96

    Article  PubMed  Google Scholar 

  3. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  4. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823

    Article  PubMed  CAS  Google Scholar 

  5. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  6. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  7. Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci USA 100:15901–15905

    Article  PubMed  CAS  Google Scholar 

  8. Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158

    Article  PubMed  CAS  Google Scholar 

  9. Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  10. Minn AJ, Kang Y, Serganova I et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  11. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  12. Kang Y, He W, Tulley S et al (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102:13909–13914

    Article  PubMed  CAS  Google Scholar 

  13. Deckers M, van Dinther M, Buijs J et al (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66:2202–2209

    Article  PubMed  CAS  Google Scholar 

  14. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  15. Berx GER, Christofori G et al (2007) Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis

  16. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  PubMed  CAS  Google Scholar 

  17. Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  PubMed  CAS  Google Scholar 

  18. Kruger JA, Kaplan CD, Luo Y et al (2006) Characterization of stem cell-like cancer cells in immune-competent mice. Blood 108:3906–3912

    Article  PubMed  CAS  Google Scholar 

  19. Ghods AJ, Irvin D, Liu G et al (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25:1645–1653

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100:15853–15858

    Article  PubMed  CAS  Google Scholar 

  21. Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17:52–59

    Article  PubMed  CAS  Google Scholar 

  22. Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 Signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  23. Piccirillo SG, Reynolds BA, Zanetti N et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  PubMed  CAS  Google Scholar 

  24. Burkert J, Wright NA, Alison MR (2006) Stem cells and cancer: an intimate relationship. J Pathol 209:287–297

    Article  PubMed  CAS  Google Scholar 

  25. Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    Article  PubMed  CAS  Google Scholar 

  26. Al-Hajj M, Becker MW, Wicha M et al (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14:43–47

    Article  PubMed  CAS  Google Scholar 

  27. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  28. Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    PubMed  CAS  Google Scholar 

  29. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  30. Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  31. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  32. Brabletz T, Jung A, Spaderna S et al (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749

    Article  PubMed  CAS  Google Scholar 

  33. Lugo TG, Braun S, Cote RJ et al (2003) Detection and measurement of occult disease for the prognosis of solid tumors. J Clin Oncol 21:2609–2615

    Article  PubMed  Google Scholar 

  34. Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  PubMed  CAS  Google Scholar 

  35. Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8:R59

    Article  PubMed  CAS  Google Scholar 

  36. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226

    Article  PubMed  CAS  Google Scholar 

  37. Gotte M, Yip GW (2006) Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res 66:10233–10237

    Article  PubMed  Google Scholar 

  38. Lopez JI, Camenisch TD, Stevens MV et al (2005) CD44 attenuates metastatic invasion during breast cancer progression. Cancer Res 65:6755–6763

    Article  PubMed  CAS  Google Scholar 

  39. Kaufmann M, Heider KH, Sinn HP et al (1995) CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet 345:615–619

    Article  PubMed  CAS  Google Scholar 

  40. Sinn HP, Heider KH, Skroch-Angel P et al (1995) Human mammary carcinomas express homologues of rat metastasis-associated variants of CD44. Breast Cancer Res Treat 36:307–313

    Article  PubMed  CAS  Google Scholar 

  41. Tempfer C, Losch A, Heinzl H et al (1996) Prognostic value of immunohistochemically detected CD44 isoforms CD44v5, CD44v6 and CD44v7–8 in human breast cancer. Eur J Cancer 32A:2023–2025

    Article  PubMed  CAS  Google Scholar 

  42. Jansen RH, Joosten-Achjanie SR, Arends JW et al (1998) CD44v6 is not a prognostic factor in primary breast cancer. Ann Oncol 9:109–111

    Article  PubMed  CAS  Google Scholar 

  43. Tokue Y, Matsumura Y, Katsumata N et al (1998) CD44 variant isoform expression and breast cancer prognosis. Jpn J Cancer Res 89:283–290

    PubMed  CAS  Google Scholar 

  44. Friedrichs K, Franke F, Lisboa BW et al (1995) CD44 isoforms correlate with cellular differentiation but not with prognosis in human breast cancer. Cancer Res 55:5424–5433

    PubMed  CAS  Google Scholar 

  45. Foekens JA, Dall P, Klijn JG et al (1999) Prognostic value of CD44 variant expression in primary breast cancer. Int J Cancer 84:209–215

    Article  PubMed  CAS  Google Scholar 

  46. Watanabe O, Kinoshita J, Shimizu T et al (2005) Expression of a CD44 variant and VEGF-C and the implications for lymphatic metastasis and long-term prognosis of human breast cancer. J Exp Clin Cancer Res 24:75–82

    PubMed  CAS  Google Scholar 

  47. Kristiansen G, Winzer KJ, Mayordomo E et al (2003) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9:4906–4913

    PubMed  CAS  Google Scholar 

  48. Kristiansen G, Schluns K, Yongwei Y et al (2003) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88:231–236

    Article  PubMed  CAS  Google Scholar 

  49. Kristiansen G, Denkert C, Schluns K et al (2002) CD24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am J Pathol 161:1215–1221

    PubMed  CAS  Google Scholar 

  50. Kristiansen G, Pilarsky C, Pervan J et al (2004) CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58:183–192

    Article  PubMed  Google Scholar 

  51. Yang GP, Ross DT, Kuang WW et al (1999) Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes. Nucleic Acids Res 27:1517–1523

    Article  PubMed  CAS  Google Scholar 

  52. Nestl A, Von Stein OD, Zatloukal K et al (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61:1569–1577

    PubMed  CAS  Google Scholar 

  53. Dupont VN, Gentien D, Oberkampf M et al (2007) A gene expression signature associated with metastatic cells in effusions of breast carcinoma patients. Int J Cancer 121:1036–1046

    Article  PubMed  CAS  Google Scholar 

  54. Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. Faseb J 12:1241–1251

    PubMed  CAS  Google Scholar 

  55. Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119:314–325

    Article  PubMed  CAS  Google Scholar 

  56. Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793

    Article  PubMed  CAS  Google Scholar 

  57. Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304:1331–1334

    Article  PubMed  CAS  Google Scholar 

  58. Nakagawa T, Nabeshima Y, Yoshida S (2007) Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12:195–206

    Article  PubMed  CAS  Google Scholar 

  59. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  PubMed  CAS  Google Scholar 

  60. Wernig M, Meissner A, Foreman R et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  PubMed  CAS  Google Scholar 

  61. Maherali N, Sridharan R, Xie W et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell 1:55–70

    Article  CAS  PubMed  Google Scholar 

  62. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1: 571–573

    Article  Google Scholar 

  63. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    Article  PubMed  CAS  Google Scholar 

  64. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  65. Hiratsuka S, Watanabe A, Aburatani H et al (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  66. Hiratsuka S, Nakamura K, Iwai S et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300

    Article  PubMed  CAS  Google Scholar 

  67. Hirakawa S, Kodama S, Kunstfeld R et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  68. Qian CN, Berghuis B, Tsarfaty G et al (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376

    Article  PubMed  CAS  Google Scholar 

  69. Hirakawa S, Brown LF, Kodama S et al (2006) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  PubMed  CAS  Google Scholar 

  70. Eccles S, Paon L, Sleeman JP (2007) Lymphatic metastasis: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis

  71. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  72. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl): 245–254

    Article  PubMed  CAS  Google Scholar 

  73. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  74. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  PubMed  CAS  Google Scholar 

  75. Eden A, Gaudet F, Waghmare A et al (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  76. Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  PubMed  CAS  Google Scholar 

  77. Hendrix MJ, Seftor EA, Seftor RE et al (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7:246–255

    Article  PubMed  CAS  Google Scholar 

  78. Widschwendter M, Fiegl H, Egle D et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  PubMed  CAS  Google Scholar 

  79. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    Article  PubMed  CAS  Google Scholar 

  80. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    Article  PubMed  CAS  Google Scholar 

  81. Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104:973–978

    Article  PubMed  CAS  Google Scholar 

  82. Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260

    Article  PubMed  CAS  Google Scholar 

  83. Cui H, Ma J, Ding J et al (2006) Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281:34696–34704

    Article  PubMed  CAS  Google Scholar 

  84. Mishra L, Shetty K, Tang Y et al (2005) The role of TGF-beta and Wnt signaling in gastrointestinal stem cells and cancer. Oncogene 24:5775–5789

    Article  PubMed  CAS  Google Scholar 

  85. Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247

    Article  PubMed  Google Scholar 

  86. Prindull G (2005) Hypothesis: cell plasticity, linking embryonal stem cells to adult stem cell reservoirs and metastatic cancer cells? Exp Hematol 33:738–746

    Article  PubMed  CAS  Google Scholar 

  87. Ein-Dor L, Kela I, Getz G et al (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178

    Article  PubMed  CAS  Google Scholar 

  88. Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to JPS from the European Union (FP6 STREP project BRECOSM, contract no. LSHC-CT-2004-503224), from the BMBF NGFN2 CancerNet Programme and from the Deutsche Forschungsgemeinschaft under the auspices of SPP 1190 “The tumor-vessel interface”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Sleeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleeman, J.P., Cremers, N. New concepts in breast cancer metastasis: tumor initiating cells and the microenvironment. Clin Exp Metastasis 24, 707–715 (2007). https://doi.org/10.1007/s10585-007-9122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9122-6

Keywords

Navigation