Skip to main content

Advertisement

Log in

The tumor microenvironment and metastatic disease

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The microenvironment of solid tumors is a heterogeneous, complex milieu for tumor growth and survival that includes features such as acidic pH, low nutrient levels, elevated interstitial fluid pressure (IFP) and chronic and fluctuating levels of oxygenation that relate to the abnormal vascular network that exists in tumors. The metastatic potential of tumor cells is believed to be regulated by interactions between the tumor cells and their extracellular environment (extracellular matrix (ECM)). These interactions can be modified by the accumulation of genetic changes and by the transient alterations in gene expression induced by the local tumor microenvironment. Clinical and experimental evidence suggests that altered gene expression in response to the hypoxic microenvironment is a contributing factor to increased metastatic efficiency. A number of genes that have been implicated in the metastatic process, involving angiogenesis, intra/extravasation, survival and growth, have been found to be hypoxia-responsive. The various metastatic determinants, genetic and epigenetic, somatic and inherited may serve as precedents for the future identification of more genes that are involved in metastasis. Much research has focused on genetic and molecular properties of the tumor cells themselves. In the present review we discuss the epigenetic and physiological regulation of metastasis and emphasize the need for further studies on the interactions between the pathophysiologic tumor microenvironment and the tumor extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sullivan R, Graham CH (2007) Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Rev 26(2):319–331. doi:10.1007/s10555-007-9062-2

    PubMed  CAS  Google Scholar 

  2. Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26(2):333–339. doi:10.1007/s10555-007-9063-1

    PubMed  CAS  Google Scholar 

  3. Cairns RA, Khokha R, Hill RP (2003) Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3(7):659–671. doi:10.2174/1566524033479447

    PubMed  CAS  Google Scholar 

  4. Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76(5):589–605. doi:10.1080/095530000138259

    PubMed  CAS  Google Scholar 

  5. Subarsky P, Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20(3):237–250. doi:10.1023/A:1022939318102

    PubMed  CAS  Google Scholar 

  6. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17. doi:10.1634/theoncologist.9-90005-10

    PubMed  CAS  Google Scholar 

  7. Milosevic M, Fyles A, Hedley D et al (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 14(3):249–258. doi:10.1016/j.semradonc.2004.04.006

    PubMed  Google Scholar 

  8. Nordsmark M, Eriksen JG, Gebski V et al (2007) Differential risk assessments from five hypoxia specific assays: the basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83(3):389–397. doi:10.1016/j.radonc.2007.04.021

    PubMed  Google Scholar 

  9. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515

    PubMed  CAS  Google Scholar 

  10. Fyles A, Milosevic M, Hedley D et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20(3):680–687. doi:10.1200/JCO.20.3.680

    PubMed  CAS  Google Scholar 

  11. Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943

    PubMed  CAS  Google Scholar 

  12. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61(24):8903–8908

    PubMed  CAS  Google Scholar 

  13. Cairns RA, Hill RP (2004) Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res 64(6):2054–2061. doi:10.1158/0008-5472.CAN-03-3196

    PubMed  CAS  Google Scholar 

  14. Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379(6560):88–91. doi:10.1038/379088a0

    PubMed  CAS  Google Scholar 

  15. Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226. doi:10.1038/nature04695

    PubMed  CAS  Google Scholar 

  16. Krishnamachary B, Berg-Dixon S, Kelly B et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63(5):1138–1143

    PubMed  CAS  Google Scholar 

  17. Brizel DM, Schroeder T, Scher RL et al (2001) Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys 51(2):349–353. doi:10.1016/S0360-3016(01)01630-3

    PubMed  CAS  Google Scholar 

  18. Weidner N (1998) Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184(2):119–122. doi:10.1002/(SICI)1096-9896(199802)184:2<119::AID-PATH17>3.0.CO;2-D

    Google Scholar 

  19. Sundfor K, Lyng H, Rofstad EK (1998) Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer 78(6):822–827

    PubMed  CAS  Google Scholar 

  20. West CM, Cooper RA, Loncaster JA et al (2001) Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 61(7):2907–2910

    PubMed  CAS  Google Scholar 

  21. Young SD, Marshall RS, Hill RP (1988) Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc Natl Acad Sci USA 85(24):9533–9537. doi:10.1073/pnas.85.24.9533

    PubMed  CAS  Google Scholar 

  22. Stackpole CW, Groszek L, Kalbag SS (1994) Benign-to-malignant B16 melanoma progression induced in two stages in vitro by exposure to hypoxia. J Natl Cancer Inst 86(5):361–367. doi:10.1093/jnci/86.5.361

    PubMed  CAS  Google Scholar 

  23. Rofstad EK, Danielsen T (1999) Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer 80(11):1697–1707. doi:10.1038/sj.bjc.6690586

    PubMed  CAS  Google Scholar 

  24. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:10.1016/S0092-8674(00)81683-9

    PubMed  CAS  Google Scholar 

  25. Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80(8 Suppl):1529–1537. doi:10.1002/(SICI)1097-0142(19971015)80:8+<1529::AID-CNCR2>3.0.CO;2-F

    Google Scholar 

  26. McDonnell CO, Hill AD, McNamara DA et al (2000) Tumour micrometastases: the influence of angiogenesis. Eur J Surg Oncol 26(2):105–115. doi:10.1053/ejso.1999.0753

    PubMed  CAS  Google Scholar 

  27. Baluk P, Morikawa S, Haskell A et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815

    PubMed  Google Scholar 

  28. Kallinowski F, Tyler G, Mueller-Klieser W et al (1989) Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. J Cell Physiol 138(1):183–191. doi:10.1002/jcp.1041380124

    PubMed  CAS  Google Scholar 

  29. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  30. Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9(4):539–549

    PubMed  CAS  Google Scholar 

  31. Franko AJ, Sutherland RM (1978) Rate of death of hypoxic cells in multicell spheroids. Radiat Res 76(3):561–572. doi:10.2307/3574805

    PubMed  CAS  Google Scholar 

  32. Durand RE, Raleigh JA (1998) Identification of nonproliferating but viable hypoxic tumor cells in vivo. Cancer Res 58(16):3547–3550

    PubMed  CAS  Google Scholar 

  33. Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism for reoxygenation. Br J Radiol 52:650–656

    PubMed  CAS  Google Scholar 

  34. Sutherland RM, Franko AJ (1980) On the nature of the radiobiologically hypoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6(1):117–120

    PubMed  CAS  Google Scholar 

  35. Bennewith KL, Durand RE (2004) Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Res 64(17):6183–6189. doi:10.1158/0008-5472.CAN-04-0289

    PubMed  CAS  Google Scholar 

  36. Lanzen J, Braun RD, Klitzman B et al (2006) Direct demonstration of instabilities in oxygen concentrations within the extravascular compartment of an experimental tumor. Cancer Res 66(4):2219–2223. doi:10.1158/0008-5472.CAN-03-2958

    PubMed  CAS  Google Scholar 

  37. Brurberg KG, Thuen M, Ruud EB et al (2006) Fluctuations in pO2 in irradiated human melanoma xenografts. Radiat Res 165(1):16–25. doi:10.1667/RR3491.1

    PubMed  CAS  Google Scholar 

  38. Holmquist L, Jogi A, Pahlman S (2005) Phenotypic persistence after reoxygenation of hypoxic neuroblastoma cells. Int J Cancer 116(2):218–225. doi:10.1002/ijc.21024

    PubMed  CAS  Google Scholar 

  39. Subarsky P, Hill RP (2008) Graded hypoxia modulates the invasive potential of HT1080 fibrosarcoma and MDA MB231 carcinoma cells. Clin Exp Metastasis 25(3):253–264

    PubMed  CAS  Google Scholar 

  40. Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 64(12):4180–4189. doi:10.1158/0008-5472.CAN-03-3038

    PubMed  CAS  Google Scholar 

  41. Zhang L, Hill RP (2007) Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer Res 67(16):7789–7797. doi:10.1158/0008-5472.CAN-06-4221

    PubMed  CAS  Google Scholar 

  42. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358. doi:10.1016/S0065-230X(08)60058-5

    PubMed  CAS  Google Scholar 

  43. Dvorak HF, Nagy JA, Feng D et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    PubMed  CAS  Google Scholar 

  44. Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7(8):345–350. doi:10.1016/S1471-4914(01)02090-1

    PubMed  CAS  Google Scholar 

  45. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007; (407): cm8

  46. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    PubMed  CAS  Google Scholar 

  47. Zhou J, Schmid T, Schnitzer S et al (2006) Tumor hypoxia and cancer progression. Cancer Lett 237(1):10–21. doi:10.1016/j.canlet.2005.05.028

    PubMed  CAS  Google Scholar 

  48. Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26. doi:10.1016/j.critrevonc.2005.12.003

    PubMed  Google Scholar 

  49. Mabjeesh NJ, Amir S (2007) Hypoxia-inducible factor (HIF) in human tumorigenesis. Histol Histopathol 22(5):559–572

    PubMed  CAS  Google Scholar 

  50. Semenza GL, Nejfelt MK, Chi SM et al (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci USA 88(13):5680–5684. doi:10.1073/pnas.88.13.5680

    PubMed  CAS  Google Scholar 

  51. Bardos JI, Ashcroft M (2005) Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 1755(2):107–120

    PubMed  CAS  Google Scholar 

  52. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90(9):4304–4308. doi:10.1073/pnas.90.9.4304

    PubMed  CAS  Google Scholar 

  53. Gruber M, Simon MC (2006) Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol 13(3):169–174. doi:10.1097/01.moh.0000219663.88409.35

    PubMed  CAS  Google Scholar 

  54. Brahimi-Horn C, Pouyssegur J (2006) The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer 93(8):E73–E80

    PubMed  Google Scholar 

  55. Mizukami Y, Kohgo Y, Chung DC (2007) Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 13(19):5670–5674. doi:10.1158/1078-0432.CCR-07-0111

    PubMed  CAS  Google Scholar 

  56. Maxwell PH, Dachs GU, Gleadle JM et al (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94(15):8104–8109. doi:10.1073/pnas.94.15.8104

    PubMed  CAS  Google Scholar 

  57. Aragones J, Schneider M, Van Geyte K et al (2008) Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 40(2):170–180. doi:10.1038/ng.2007.62

    PubMed  CAS  Google Scholar 

  58. Coleman ML, Ratcliffe PJ (2007) Oxygen sensing and hypoxia-induced responses. Essays Biochem 43:1–15. doi:10.1042/BSE0430001

    PubMed  CAS  Google Scholar 

  59. Maynard MA, Ohh M (2007) The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 64(16):2170–2180. doi:10.1007/s00018-007-7082-2

    PubMed  CAS  Google Scholar 

  60. Rocha S (2007) Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 32(8):389–397. doi:10.1016/j.tibs.2007.06.005

    PubMed  CAS  Google Scholar 

  61. Liu YL, Yu JM, Song XR et al (2006) Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 5(10):1320–1326

    PubMed  CAS  Google Scholar 

  62. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25(13):5675–5686. doi:10.1128/MCB.25.13.5675-5686.2005

    PubMed  CAS  Google Scholar 

  63. Winter SC, Shah KA, Han C et al (2006) The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer 107(4):757–766. doi:10.1002/cncr.21983

    PubMed  CAS  Google Scholar 

  64. Maynard MA, Qi H, Chung J et al (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278(13):11032–11040. doi:10.1074/jbc.M208681200

    PubMed  CAS  Google Scholar 

  65. Gu YZ, Moran SM, Hogenesch JB et al (1998) Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7(3):205–213

    PubMed  CAS  Google Scholar 

  66. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–554. doi:10.1038/35107085

    PubMed  CAS  Google Scholar 

  67. Berra E, Benizri E, Ginouves A et al (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22(16):4082–4090. doi:10.1093/emboj/cdg392

    PubMed  CAS  Google Scholar 

  68. Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279(37):38458–38465. doi:10.1074/jbc.M406026200

    PubMed  CAS  Google Scholar 

  69. Hewitson KS, Schofield CJ, Ratcliffe PJ (2007) Hypoxia-inducible factor prolyl-hydroxylase: purification and assays of PHD2. Meth Enzymol 435:25–42. doi:10.1016/S0076-6879(07)35002-7

    PubMed  CAS  Google Scholar 

  70. D’Angelo G, Duplan E, Boyer N et al (2003) Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem 278(40):38183–38187. doi:10.1074/jbc.M302244200

    PubMed  CAS  Google Scholar 

  71. Erez N, Milyavsky M, Eilam R et al (2003) Expression of prolyl-hydroxylase-1 (PHD1/EGLN2) suppresses hypoxia inducible factor-1alpha activation and inhibits tumor growth. Cancer Res 63(24):8777–8783

    PubMed  CAS  Google Scholar 

  72. Moeller BJ, Cao Y, Vujaskovic Z et al (2003) Reactive oxygen species and hypoxia inducible factor-1alpha serve as important vascular stabilizing elements in tumors following radiotherapy. Int J Radiat Oncol Biol Phys 57(2 Suppl):S320–S321. doi:10.1016/S0360-3016(03)01198-2

    Google Scholar 

  73. Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9(9):1391–1396. doi:10.1089/ars.2007.1691

    PubMed  CAS  Google Scholar 

  74. Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118:4325–4326. doi:10.1242/jcs.02552

    PubMed  CAS  Google Scholar 

  75. Bonitsis N, Batistatou A, Karantima S et al (2006) The role of cadherin/catenin complex in malignant melanoma. Exp Oncol 28(3):187–193

    PubMed  CAS  Google Scholar 

  76. Bienz M (2005) beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 15(2):R64–R67. doi:10.1016/j.cub.2004.12.058

    PubMed  CAS  Google Scholar 

  77. Hotz B, Arndt M, Dullat S et al (2007) Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res 13(16):4769–4776. doi:10.1158/1078-0432.CCR-06-2926

    PubMed  CAS  Google Scholar 

  78. Imai T, Horiuchi A, Wang C et al (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163(4):1437–1447

    PubMed  CAS  Google Scholar 

  79. Kokura S, Yoshida N, Imamoto E et al (2004) Anoxia/reoxygenation down-regulates the expression of E-cadherin in human colon cancer cell lines. Cancer Lett 211(1):79–87. doi:10.1016/j.canlet.2004.01.030

    PubMed  CAS  Google Scholar 

  80. Tanimoto K, Yoshiga K, Eguchi H, et al (2003) Hypoxia-inducible factor-1{alpha} polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 24(11):1779–1783

    Google Scholar 

  81. Kurrey NK, A K, Bapat SA (2005) Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97(1):155–165. doi:10.1016/j.ygyno.2004.12.043

    PubMed  CAS  Google Scholar 

  82. Davidson NE, Sukumar S (2005) Of Snail, mice, and women. Cancer Cell 8(3):173–174. doi:10.1016/j.ccr.2005.08.006

    PubMed  CAS  Google Scholar 

  83. Chang Q, Qin R, Huang T et al (2006) Effect of antisense hypoxia-inducible factor 1alpha on progression, metastasis, and chemosensitivity of pancreatic cancer. Pancreas 32(3):297–305. doi:10.1097/00006676-200604000-00010

    PubMed  CAS  Google Scholar 

  84. Arao S, Masumoto A, Otsuki M (2000) Beta1 integrins play an essential role in adhesion and invasion of pancreatic carcinoma cells. Pancreas 20(2):129–137. doi:10.1097/00006676-200003000-00004

    PubMed  CAS  Google Scholar 

  85. Andreasen PA, Egelund R, Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57(1):25–40. doi:10.1007/s000180050497

    PubMed  CAS  Google Scholar 

  86. Festuccia C, Dolo V, Guerra F et al (1998) Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 16(6):513–528. doi:10.1023/A:1006590217724

    PubMed  CAS  Google Scholar 

  87. Graham CH, Forsdike J, Fitzgerald CJ et al (1999) Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80(4):617–623. doi:10.1002/(SICI) 1097-0215(19990209) 80:4<617::AID-IJC22>3.0.CO;2-C

    Google Scholar 

  88. Osinsky SP, Ganusevich II, Bubnovskaya LN et al (2005) Hypoxia level and matrix metalloproteinases-2 and -9 activity in Lewis lung carcinoma: correlation with metastasis. Exp Oncol 27(3):202–205

    PubMed  CAS  Google Scholar 

  89. Rofstad EK, Rasmussen H, Galappathi K et al (2002) Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62(6):1847–1853

    PubMed  CAS  Google Scholar 

  90. Canning MT, Postovit LM, Clarke SH et al (2001) Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. Exp Cell Res 267(1):88–94. doi:10.1006/excr.2001.5243

    PubMed  CAS  Google Scholar 

  91. Sun B, Zhang D, Zhang S et al (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249(2):188–197. doi:10.1016/j.canlet.2006.08.016

    PubMed  CAS  Google Scholar 

  92. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3(4):347–361. doi:10.1016/S1535-6108(03)00085-0

    PubMed  Google Scholar 

  93. Corso S, Migliore C, Ghiso E et al (2008) Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 27(5):684–693

    PubMed  CAS  Google Scholar 

  94. Ratajczak MZ, Zuba-Surma E, Kucia M et al (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20(11):1915–1924. doi:10.1038/sj.leu.2404357

    PubMed  CAS  Google Scholar 

  95. Ben-Baruch A (2008) Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25(4):345–356

    PubMed  CAS  Google Scholar 

  96. Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72(4):408–411

    PubMed  CAS  Google Scholar 

  97. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56. doi:10.1038/35065016

    PubMed  CAS  Google Scholar 

  98. Engl T, Relja B, Blumenberg C et al (2006) Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix. Life Sci 78(16):1784–1793. doi:10.1016/j.lfs.2005.08.019

    PubMed  CAS  Google Scholar 

  99. Engl T, Relja B, Marian D et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia (New York, N.Y.) 8(4):290–301. 10.1593/neo.05694

  100. Schimanski CC, Bahre R, Gockel I et al (2006) Dissemination of hepatocellular carcinoma is mediated via chemokine receptor CXCR4. Br J Cancer 95(2):210–217. doi:10.1038/sj.bjc.6603251

    PubMed  CAS  Google Scholar 

  101. Wykoff CC, Pugh CW, Harris AL et al (2001) The HIF pathway: implications for patterns of gene expression in cancer. Novartis Found Symp 240:212–225 discussion 25–31

    Article  PubMed  CAS  Google Scholar 

  102. Pan J, Mestas J, Burdick MD et al (2006) Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 5:56. doi:10.1186/1476-4598-5-56

    PubMed  Google Scholar 

  103. Erler JT, Giaccia AJ (2006) Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res 66(21):10238–10241. doi:10.1158/0008-5472.CAN-06-3197

    PubMed  CAS  Google Scholar 

  104. Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914. doi:10.1038/sj.onc.1206703

    PubMed  CAS  Google Scholar 

  105. Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272(24):15442–15451. doi:10.1074/jbc.272.24.15442

    PubMed  CAS  Google Scholar 

  106. Isaacs JS, Jung YJ, Mimnaugh EG et al (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277(33):29936–29944. doi:10.1074/jbc.M204733200

    PubMed  CAS  Google Scholar 

  107. Rousseau S, Houle F, Kotanides H et al (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275(14):10661–10672. doi:10.1074/jbc.275.14.10661

    PubMed  CAS  Google Scholar 

  108. Siesser PM, Hanks SK (2006) The signaling and biological implications of FAK overexpression in cancer. Clin Cancer Res 12(111):3233–3237. doi:10.1158/1078-0432.CCR-06-0456

    PubMed  CAS  Google Scholar 

  109. Zhu Y, Denhardt DT, Cao H et al (2005) Hypoxia upregulates osteopontin expression in NIH-3T3 cells via a Ras-activated enhancer. Oncogene 24(43):6555–6563

    PubMed  CAS  Google Scholar 

  110. Wai PY, Kuo PC (2004) The role of Osteopontin in tumor metastasis. J Surg Res 121(2):228–241. doi:10.1016/j.jss.2004.03.028

    PubMed  CAS  Google Scholar 

  111. Tuck AB, Arsenault DM, O’Malley FP et al (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4246. doi:10.1038/sj.onc.1202799

    PubMed  CAS  Google Scholar 

  112. Tuck AB, O’Malley FP, Singhal H et al (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 121(6):578–584

    PubMed  CAS  Google Scholar 

  113. Tuck AB, O’Malley FP, Singhal H et al (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5):502–508. doi:10.1002/(SICI)1097-0215(19981023)79:5<502::AID-IJC10>3.0.CO;2-3

    Google Scholar 

  114. Thalmann GN, Sikes RA, Devoll RE et al (1999) Osteopontin: possible role in prostate cancer progression. Clin Cancer Res 5(8):2271–2277

    PubMed  CAS  Google Scholar 

  115. Agrawal D, Chen T, Irby R et al (2002) Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 94(7):513–521

    PubMed  CAS  Google Scholar 

  116. Yeatman TJ, Chambers AF (2003) Osteopontin and colon cancer progression. Clin Exp Metastasis 20(1):85–90. doi:10.1023/A:1022502805474

    PubMed  CAS  Google Scholar 

  117. Le QT, Sutphin PD, Raychaudhuri S et al (2003) Identification of osteopontin as a prognostic plasma marker for head and neck squamous cell carcinomas. Clin Cancer Res 9(1):59–67

    PubMed  CAS  Google Scholar 

  118. Overgaard J, Eriksen JG, Nordsmark M et al (2005) Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6(10):757–764. doi:10.1016/S1470-2045(05)70292-8

    PubMed  CAS  Google Scholar 

  119. Bramwell VH, Tuck AB, Wilson SM et al (2005) Expression of osteopontin and HGF/met in adult soft tissue tumors. Cancer Biol Ther 4(12):1336–1341

    Article  PubMed  CAS  Google Scholar 

  120. Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985. doi:10.1126/science.6823562

    PubMed  CAS  Google Scholar 

  121. Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359(6398):843–845. doi:10.1038/359843a0

    PubMed  CAS  Google Scholar 

  122. Forsythe JA, Jiang BH, Iyer NV et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613

    PubMed  CAS  Google Scholar 

  123. Mizukami Y, Li J, Zhang X et al (2004) Hypoxia-inducible factor-1-independent regulation of vascular endothelial growth factor by hypoxia in colon cancer. Cancer Res 64(5):1765–1772. doi:10.1158/0008-5472.CAN-03-3017

    PubMed  CAS  Google Scholar 

  124. Veikkola T, Karkkainen M, Claesson-Welsh L et al (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60(2):203–212

    PubMed  CAS  Google Scholar 

  125. Rofstad EK, Danielsen T (1998) Hypoxia-induced angiogenesis and vascular endothelial growth factor secretion in human melanoma. Br J Cancer 77(6):897–902

    PubMed  CAS  Google Scholar 

  126. Solorzano CC, Baker CH, Bruns CJ et al (2001) Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm 16(5):359–370. doi:10.1089/108497801753354267

    PubMed  CAS  Google Scholar 

  127. Kanayama H, Yano S, Kim SJ et al (1999) Expression of vascular endothelial growth factor by human renal cancer cells enhances angiogenesis of primary tumors and production of ascites but not metastasis to the lungs in nude mice. Clin Exp Metastasis 17(10):831–840. doi:10.1023/A:1006792007063

    PubMed  CAS  Google Scholar 

  128. Jang A, Hill RP (1997) An examination of the effects of hypoxia, acidosis, and glucose starvation on the expression of metastasis-associated genes in murine tumor cells. Clin Exp Metastasis 15(5):469–483. doi:10.1023/A:1018470709523

    PubMed  CAS  Google Scholar 

  129. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234. doi:10.1182/blood-2004-03-1109

    PubMed  CAS  Google Scholar 

  130. Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314. doi:10.2741/2389

    PubMed  CAS  Google Scholar 

  131. Desbaillets I, Diserens AC, Tribolet N et al (1997) Upregulation of interleukin 8 by oxygen-deprived cells in glioblastoma suggests a role in leukocyte activation, chemotaxis, and angiogenesis. J Exp Med 186(8):1201–1212. doi:10.1084/jem.186.8.1201

    PubMed  CAS  Google Scholar 

  132. Yoshida A, Yoshida S, Khalil AK et al (1998) Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39(7):1097–1106

    PubMed  CAS  Google Scholar 

  133. Moghaddam A, Zhang HT, Fan TP et al (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92(4):998–1002. doi:10.1073/pnas.92.4.998

    PubMed  CAS  Google Scholar 

  134. Harris AL, Zhang H, Moghaddam A et al (1996) Breast cancer angiogenesis––new approaches to therapy via antiangiogenesis, hypoxic activated drugs, and vascular targeting. Breast Cancer Res Treat 38(1):97–108. doi:10.1007/BF01803788

    PubMed  CAS  Google Scholar 

  135. Slavin J (1995) Fibroblast growth factors: at the heart of angiogenesis. Cell Biol Int 19(5):431–444. doi:10.1006/cbir.1995.1087

    PubMed  CAS  Google Scholar 

  136. Rofstad EK, Halsor EF (2000) Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 60(17):4932–4938

    PubMed  CAS  Google Scholar 

  137. Stubbs M, McSheehy PM, Griffiths JR et al (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6(1):15–19. doi:10.1016/S1357-4310(99)01615-9

    PubMed  CAS  Google Scholar 

  138. Raghunand N, Gatenby RA, Gillies RJ (2003) Microenvironmental and cellular consequences of altered blood flow in tumours. Br J Radiol 76(Suppl 1):S11–S22

    PubMed  Google Scholar 

  139. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229. doi:10.1007/s10863-007-9080-3

    PubMed  CAS  Google Scholar 

  140. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478

    PubMed  CAS  Google Scholar 

  141. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17(1):71–77. doi:10.1016/j.gde.2006.12.006

    PubMed  CAS  Google Scholar 

  142. Semenza GL (2007) HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J Bioenerg Biomembr 39(3):231–234. doi:10.1007/s10863-007-9081-2

    PubMed  CAS  Google Scholar 

  143. Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64(4):663–670

    PubMed  CAS  Google Scholar 

  144. Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707. doi:10.1158/0008-5472.CAN-06-0983

    PubMed  CAS  Google Scholar 

  145. Moellering RE, Black KC, Krishnamurty C et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25(4):411–425

    PubMed  CAS  Google Scholar 

  146. Kalliomaki T, Hill RP (2004) Effects of tumour acidification with glucose + MIBG on the spontaneous metastatic potential of two murine cell lines. Br J Cancer 90(9):1842–1849

    PubMed  CAS  Google Scholar 

  147. Walenta S, Snyder S, Haroon ZA et al (2001) Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 51(3):840–848. doi:10.1016/S0360-3016(01)01700-X

    PubMed  CAS  Google Scholar 

  148. Fukumura D, Xu L, Chen Y et al (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61(16):6020–6024

    PubMed  CAS  Google Scholar 

  149. Less JR, Posner MC, Boucher Y et al (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52:6371–6374

    PubMed  CAS  Google Scholar 

  150. Nathanson SD, Nelson L (1994) Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Ann Surg Oncol 1:333–338

    PubMed  CAS  Google Scholar 

  151. Curti BD, Urba WJ, Alvord WG et al (1993) Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: changes during treatment. Cancer Res 53:2204–2207

    PubMed  CAS  Google Scholar 

  152. Boucher Y, Kirkwood JM, Opacic D (1991) Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 51:6691–6694

    PubMed  CAS  Google Scholar 

  153. Gutmann R, Leunig M, Feyh J et al (1992) Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 52:1993–1995

    PubMed  CAS  Google Scholar 

  154. Milosevic M, Fyles A, Hedley D et al (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61(17):6400–6405

    PubMed  CAS  Google Scholar 

  155. Roh HD, Kalnicki S, Buchsbaum R et al (1991) Interstitial hypertension in carcinoma of uterine cervix in patients: possible correlation with tumor oxygenation and radiation response. Cancer Res 51:6695–6698

    PubMed  CAS  Google Scholar 

  156. Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886. doi:10.1126/science.1071420

    PubMed  CAS  Google Scholar 

  157. Leu AJ, Berk DA, Lymboussaki A et al (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60:4324–4327

    PubMed  CAS  Google Scholar 

  158. Lunt SJ, Kalliomaki TM, Brown A et al (2008) Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 8(1):2. doi:10.1186/1471-2407-8-2

    PubMed  Google Scholar 

  159. Jain RK, Tong RT, Munn LL (2007) Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 67(6):2729–2735. doi:10.1158/0008-5472.CAN-06-4102

    PubMed  CAS  Google Scholar 

  160. Heldin CH, Rubin K, Pietras K et al (2004) High interstitial fluid pressure––an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813. doi:10.1038/nrc1456

    PubMed  CAS  Google Scholar 

  161. Oldberg A, Kalamajski S, Salnikov AV et al (2007) Collagen-binding proteoglycan fibromodulin can determine stroma matrix structure and fluid balance in experimental carcinoma. Proc Natl Acad Sci USA 104(35):13966–13971. doi:10.1073/pnas.0702014104

    PubMed  CAS  Google Scholar 

  162. Wiig H, Rubin K, Reed RK (2003) New and active role of the interstitium in control of interstitial fluid pressure: potential therapeutic consequences. Acta Anaesthesiol Scand 47:111–121. doi:10.1034/j.1399-6576.2003.00050.x

    PubMed  CAS  Google Scholar 

  163. Pietras K, Sjoblom T, Rubin K et al (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443. doi:10.1016/S1535-6108(03)00089-8

    PubMed  CAS  Google Scholar 

  164. Pietras K, Rubin K, Sjoblom T et al (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res 62(19):5476–5484

    PubMed  CAS  Google Scholar 

  165. Pietras K, Ostman A, Sjoquist M et al (2001) Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 61(7):2929–2934

    PubMed  CAS  Google Scholar 

  166. Mocanu JD, Yip KW, Alajez NM et al (2007) Imaging the modulation of adenoviral kinetics and biodistribution for cancer gene therapy. Mol Ther 15(5):921–929

    PubMed  CAS  Google Scholar 

  167. Vlahovic G, Ponce AM, Rabbani Z et al (2007) Treatment with imatinib improves drug delivery and efficacy in NSCLC xenografts. Br J Cancer 97(6):735–740. doi:10.1038/sj.bjc.6603941

    PubMed  CAS  Google Scholar 

  168. Lee CG, Heijn M, di Tomaso E et al (2000) Anti-Vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570

    PubMed  CAS  Google Scholar 

  169. Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110(4):475–482

    PubMed  CAS  Google Scholar 

  170. Pietras K, Stumm M, Hubert M et al (2003) STI571 enhances the therapeutic index of epothilone B by a tumor-selective increase of drug uptake. Clin Cancer Res 9(10 pt 1):3779–3787

    PubMed  CAS  Google Scholar 

  171. Rofstad EK, Tunheim SH, Mathiesen B et al (2002) Pulmonary and lymph node metastasis is associated with primary tumor interstitial fluid pressure in human melanoma xenografts. Cancer Res 62(3):661–664

    PubMed  CAS  Google Scholar 

  172. Salnikov AV, Heldin NE, Stuhr LB et al (2006) Inhibition of carcinoma cell-derived VEGF reduces inflammatory characteristics in xenograft carcinoma. Int J Cancer 119(12):2795–2802. doi:10.1002/ijc.22217

    PubMed  CAS  Google Scholar 

  173. Boucher Y, Lee I, Jain RK (1995) Lack of general correlation between interstitial fluid pressure and oxygen partial pressure in solid tumors. Microvasc Res 50(2):175–182. doi:10.1006/mvre.1995.1051

    PubMed  CAS  Google Scholar 

  174. Tufto I, Lyng H, Rofstad EK (1996) Interstitial fluid pressure, perfusion rate and oxygen tension in human melanoma xenografts. Br J Cancer 74(Suppl 27):S252–S255

    Google Scholar 

  175. Nathanson SD (2003) Insights into the mechanisms of lymph node metastasis. Cancer 98(2):413–423. doi:10.1002/cncr.11464

    PubMed  Google Scholar 

  176. Baxter L, Jain R (1989) Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37:77–104. doi:10.1016/0026-2862(89)90074-5

    PubMed  CAS  Google Scholar 

  177. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue isolated and subcutaneous tissues: implications for therapy. Cancer Res 50:4478–4484

    PubMed  CAS  Google Scholar 

  178. Hill RP, Perris R (2007) “Destemming” cancer stem cells. J Natl Cancer Inst 99(19):1435–1440. doi:10.1093/jnci/djm136

    PubMed  CAS  Google Scholar 

  179. Craig T, Jordan MLG, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261. doi:10.1056/NEJMra061808

    Google Scholar 

  180. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    PubMed  CAS  Google Scholar 

  181. Barnhart BC, Simon MC (2007) Metastasis and stem cell pathways. Cancer Metastasis Rev 26(2):261–271. doi:10.1007/s10555-007-9053-3

    PubMed  CAS  Google Scholar 

  182. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472. doi:10.1016/j.cell.2007.04.019

    PubMed  CAS  Google Scholar 

  183. Giatromanolaki A, Koukourakis MI, Sivridis E et al (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85(6):881–890. doi:10.1054/bjoc.2001.2018

    PubMed  CAS  Google Scholar 

  184. Schoppmann SF, Fenzl A, Schindl M et al (2006) Hypoxia inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 99(2):135–141. doi:10.1007/s10549-006-9190-3

    PubMed  CAS  Google Scholar 

  185. Okada K, Osaki M, Araki K et al (2005) Expression of hypoxia-inducible factor (HIF-1alpha), VEGF-C and VEGF-D in non-invasive and invasive breast ductal carcinomas. Anticancer Res 25(4):3003–3009

    PubMed  CAS  Google Scholar 

  186. Ueda M, Hung YC, Terai Y et al (2005) Vascular endothelial growth factor-C expression and invasive phenotype in ovarian carcinomas. Clin Cancer Res 11(9):3225–3232. doi:10.1158/1078-0432.CCR-04-1148

    PubMed  CAS  Google Scholar 

  187. Le YJ, Corry PM (1999) Hypoxia-induced bFGF gene expression is mediated through the JNK signal transduction pathway. Mol Cell Biochem 202(1–2):1–8. doi:10.1023/A:1007059806016

    PubMed  CAS  Google Scholar 

  188. Giatromanolaki A, Koukourakis MI, Stathopoulos GP et al (2000) Angiogenic interactions of vascular endothelial growth factor, of thymidine phosphorylase, and of p53 protein expression in locally advanced gastric cancer. Oncol Res 12(1):33–41

    PubMed  CAS  Google Scholar 

  189. Bos R, van Diest PJ, de Jong JS et al (2005) Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46(1):31–36. doi:10.1111/j.1365-2559.2005.02045.x

    PubMed  CAS  Google Scholar 

  190. Marjon PL, Bobrovnikova-Marjon EV, Abcouwer SF (2004) Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress. Mol Cancer 3(1):4. doi:10.1186/1476-4598-3-4

    PubMed  Google Scholar 

  191. Bobrovnikova-Marjon EV, Marjon PL, Barbash O et al (2004) Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64(14):4858–4869. doi:10.1158/0008-5472.CAN-04-0682

    PubMed  CAS  Google Scholar 

  192. Rofstad EK, Mathiesen B, Henriksen K et al (2005) The tumor bed effect: increased metastatic dissemination from hypoxia-induced up-regulation of metastasis-promoting gene products. Cancer Res 65(6):2387–2396. doi:10.1158/0008-5472.CAN-04-3039

    PubMed  CAS  Google Scholar 

  193. Kassim SK, El-Salahy EM, Fayed ST et al (2004) Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clin Biochem 37(5):363–369. doi:10.1016/j.clinbiochem.2004.01.014

    PubMed  CAS  Google Scholar 

  194. Griffiths L, Dachs GU, Bicknell R et al (1997) The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res 57(4):570–572

    PubMed  CAS  Google Scholar 

  195. Maity A, Solomon D (2000) Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (uPAR) message by hypoxia. Exp Cell Res 255(2):250–257. doi:10.1006/excr.1999.4804

    PubMed  CAS  Google Scholar 

  196. Memarzadeh S, Kozak KR, Chang L et al (2002) Urokinase plasminogen activator receptor: Prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA 99(16):10647–10652. doi:10.1073/pnas.152127499

    PubMed  Google Scholar 

  197. Yoon SY, Lee YJ, Seo JH et al (2006) uPAR expression under hypoxic conditions depends on iNOS modulated ERK phosphorylation in the MDA-MB-231 breast carcinoma cell line. Cell Res 16(1):75–81. doi:10.1038/sj.cr.7310010

    PubMed  CAS  Google Scholar 

  198. Munoz-Najar UM, Neurath KM, Vumbaca F et al (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392. doi:10.1038/sj.onc.1209273

    PubMed  CAS  Google Scholar 

  199. Lukacova S, Khalil AA, Overgaard J et al (2005) Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum. Int J Radiat Biol 81(12):937–944. doi:10.1080/09553000600567616

    PubMed  CAS  Google Scholar 

  200. Said HM, Katzer A, Flentje M et al (2005) Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76(2):200–205. doi:10.1016/j.radonc.2005.06.023

    PubMed  CAS  Google Scholar 

  201. Smith MC, Luker KE, Garbow JR et al (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64(23):8604–8612. doi:10.1158/0008-5472.CAN-04-1844

    PubMed  CAS  Google Scholar 

  202. Shim H, Lau SK, Devi S et al (2006) Lower expression of CXCR4 in lymph node metastases than in primary breast cancers: potential regulation by ligand-dependent degradation and HIF-1alpha. Biochem Biophys Res Commun 346(1):252–258. doi:10.1016/j.bbrc.2006.05.110

    PubMed  CAS  Google Scholar 

  203. Staller P, Sulitkova J, Lisztwan J et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–311. doi:10.1038/nature01874

    PubMed  CAS  Google Scholar 

  204. Baykal C, Ayhan A, Al A et al (2003) Overexpression of the c-Met/HGF receptor and its prognostic significance in uterine cervix carcinomas. Gynecol Oncol 88(2):123–129. doi:10.1016/S0090-8258(02)00073-2

    PubMed  CAS  Google Scholar 

  205. Ayhan A, Ertunc D, Tok EC et al (2005) Expression of the c-Met in advanced epithelial ovarian cancer and its prognostic significance. Int J Gynecol Cancer 15(4):618–623. doi:10.1111/j.1525-1438.2005.00117.x

    PubMed  CAS  Google Scholar 

  206. Ide T, Kitajima Y, Miyoshi A et al (2006) Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 119(12):2750–2759. doi:10.1002/ijc.22178

    PubMed  CAS  Google Scholar 

  207. Nie D, Krishnamoorthy S, Jin R et al (2006) Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 281(27):18601–18609. doi:10.1074/jbc.M601887200

    PubMed  CAS  Google Scholar 

  208. Postovit LM, Abbott DE, Payne SL et al (2008) Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. J Cell Biochem 103(5):1369–1378

    PubMed  CAS  Google Scholar 

  209. Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up regulating mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 64(12):4180–4189

    Google Scholar 

  210. Bardos JI, Chau NM, Ashcroft M (2004) Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol 24(7):2905–2914. doi:10.1128/MCB.24.7.2905-2914.2004

    PubMed  CAS  Google Scholar 

  211. Storci G, Sansone P, Trere D et al (2008) The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 214(1):25–37. doi:10.1002/path.2254

    PubMed  CAS  Google Scholar 

  212. Tsutsumi S, Yanagawa T, Shimura T et al (2004) Autocrine motility factor signaling enhances pancreatic cancer metastasis. Clin Cancer Res 10(22):7775–7784. doi:10.1158/1078-0432.CCR-04-1015

    PubMed  CAS  Google Scholar 

  213. Yoon DY, Buchler P, Saarikoski ST et al (2001) Identification of genes differentially induced by hypoxia in pancreatic cancer cells. Biochem Biophys Res Commun 288(4):882–886. doi:10.1006/bbrc.2001.5867

    PubMed  CAS  Google Scholar 

  214. Niizeki H, Kobayashi M, Horiuchi I et al (2002) Hypoxia enhances the expression of autocrine motility factor and the motility of human pancreatic cancer cells. Br J Cancer 86(12):1914–1919. doi:10.1038/sj.bjc.6600331

    PubMed  CAS  Google Scholar 

  215. Funasaka T, Yanagawa T, Hogan V et al (2005) Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J 19(11):1422–1430. doi:10.1096/fj.05-3699com

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Hill.

Additional information

Sarah Jane Lunt and Naz Chaudary contributed equally to this manuscript. The research of the authors is supported by a grant from the Terry Fox Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunt, S.J., Chaudary, N. & Hill, R.P. The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26, 19–34 (2009). https://doi.org/10.1007/s10585-008-9182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9182-2

Keywords

Navigation