Skip to main content

Advertisement

Log in

Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Androgen refractory cancer of the prostate (ARCaP) cells contain androgen receptor (AR) and synthesize and secrete prostate specific antigen (PSA). We isolated epithelia-like ARCaPE from parental ARCaP cells and induced them to undergo epithelial–mesenchymal transition (EMT) by exposing these cells to soluble factors including TGFβ1 plus EGF, IGF-1, β2-microglobulin (β2-m), or a bone microenvironment. The molecular and behavioral characteristics of the resultant ARCaPM were characterized extensively in comparison to the parental ARCaPE cells. In addition to expressing mesenchymal biomarkers, ARCaPM gained 100% incidence of bone metastasis. ARCaPM cells express receptor activator of NF-κB ligand (RANKL), which was shown to increase tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts in culture, and when metastatic to bone in vivo. We provide evidence that RANKL expression was promoted by increased cell signaling mediated by the activation of Stat3-Snail-LIV-1. RANKL expressed by ARCaPM cells is functional both in vitro and in vivo. The lesson we learned from the ARCaP model of EMT is that activation of a specific cell signaling pathway by soluble factors can lead to increased bone turnover, mediated by enhanced RANKL expression by tumor cells, which is implicated in the high incidence of prostate cancer bone colonization. The ARCaP EMT model is highly attractive for developing new therapeutic agents to treat prostate cancer bone metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

ARCaP:

Androgen-refractory human prostate cancer cell model from a patient with prostate cancer bone metastasis

ARCaPE :

ARCaP clone with epithelial phenotype

ARCaPM :

ARCaP clone with mesenchymal phenotype

β2-m:

β2-Microglobulin

BSP:

Bone sialoprotein

C4-2:

Lineage derivative cells from LNCaP

C4-2B:

C4-2 cells metastasized to bone

CK18/19:

Cytokeratin 18/19

CM:

Conditioned medium

CREB:

cAMP-responsive element-binding protein

E-cad:

E-cadherin

EGF:

Epidermal growth factor

EMT:

Epithelial–mesenchymal transition

FBS:

Fetal bovine serum

IC:

Intracardiac

IGF-1:

Insulin-like growth factor 1

IHC:

Immunohistochemistry

IL13Rα2:

Interleukin13 receptor α2

LNCaP:

Prostate cancer cells metastasized to lymph node

MET:

Mesenchymal–epithelial transition

MErT:

Mesenchymal–epithelial-reverting transition

MMT:

Mesenchymal–mesenchymal transition

N-cad:

N-cadherin

NFκB:

Nuclear factor kappa B

OC:

Osteocalcin

OPG:

Osteoprotegerin

OPN:

Osteopontin

RANKL:

Receptor activator of NFκB ligand

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SCID:

Severe combined immunodeficiency

siRNA:

Small interfering RNA

Stat:

Signal transducer and activator of transcription

TGFβ1:

Transforming growth factor β1

TRAP:

Tartrate-resistant acid phosphatase

VM:

Vimentin

References

  1. Robinson VL, Kauffman EC, Sokoloff MH et al (2004) The basic biology of metastasis. Cancer Treat Res 118:1–21

    PubMed  CAS  Google Scholar 

  2. Tu SM, Lin SH (2004) Clinical aspects of bone metastases in prostate cancer. Cancer Treat Res 118:23–46

    PubMed  Google Scholar 

  3. Wu TT, Sikes RA, Cui Q et al (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer 77(6):887–894. doi:10.1002/(SICI) 1097-0215(19980911) 77:6<887::AID-IJC15>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  4. Xu J, Wang R, Xie ZH et al (2006) Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate 66(15):1664–1673. doi:10.1002/pros.20488

    Article  PubMed  CAS  Google Scholar 

  5. Zhau HY, Chang SM, Chen BQ et al (1996) Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci USA 93(26):15152–15157. doi:10.1073/pnas.93.26.15152

    Article  PubMed  CAS  Google Scholar 

  6. Odero-Marah V, Shi C, Zhau HE et al (2007) Dual role of Snail transcription factor in epithelial to mesenchymal transition and neuroendocrine differentiation in human prostate cancer cells. AACR Proc 48:247

    Google Scholar 

  7. Chung LW, Baseman A, Assikis V et al (2005) Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol 173(1):10–20

    PubMed  Google Scholar 

  8. Chung LW, Huang WC, Sung SY et al (2006) Stromal–epithelial interaction in prostate cancer progression. Clin Genitourin Cancer 5(2):162–170

    Article  PubMed  Google Scholar 

  9. Huang WC, Xie Z, Konaka H et al (2005) Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res 65(6):2303–2313. doi:10.1158/0008-5472.CAN-04-3448

    Article  PubMed  CAS  Google Scholar 

  10. Gotzmann J, Mikula M, Eger A et al (2004) Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis. Mutat Res 566(1):9–20. doi:10.1016/S1383-5742(03) 00033-4

    Article  PubMed  CAS  Google Scholar 

  11. Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial–mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548–558. doi:10.1016/j.ceb.2005.08.001

    Article  PubMed  CAS  Google Scholar 

  12. Brabletz T, Hlubek F, Spaderna S et al (2005) Invasion and metastasis in colorectal cancer: epithelial–mesenchymal transition, mesenchymal–epithelial transition, stem cells and beta-catenin. Cells Tissues Organs 179(1–2):56–65. doi:10.1159/000084509

    Article  PubMed  CAS  Google Scholar 

  13. Taylor KM, Hiscox S, Nicholson RI (2004) Zinc transporter LIV-1: a link between cellular development and cancer progression. Trends Endocrinol Metab 15(10):461–463. doi:10.1016/j.tem.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  14. Larue L, Bellacosa A (2005) Epithelial–mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24(50):7443–7454. doi:10.1038/sj.onc.1209091

    Article  PubMed  CAS  Google Scholar 

  15. Thiery JP (2003) Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746. doi:10.1016/j.ceb.2003.10.006

    Article  PubMed  CAS  Google Scholar 

  16. Yates C, Shepard CR, Papworth G et al (2007) Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 97:225–246. doi:10.1016/S0065-230X(06) 97010-9

    Article  PubMed  Google Scholar 

  17. Albalate M, de la Piedra C, Fernandez C et al (2006) Association between phosphate removal and markers of bone turnover in haemodialysis patients. Nephrology Dialysis Transplantation 21(6):1626–1632. doi:10.1093/ndt/gfl034

    Article  CAS  Google Scholar 

  18. Graham T R ZHE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, Liu T, Simons JW, O’Regan RM (2008) IGF-1-dependent upregulation of ZEB1 expression drives EMT in human prostate cancer cells in vitro. Cancer Res 68(7):2479–2488

    Google Scholar 

  19. Gleave M, Hsieh JT, Gao CA et al (1991) Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 51(14):3753–3761

    PubMed  CAS  Google Scholar 

  20. Thalmann GN, Sikes RA, Wu TT et al (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44(2):91–103

    Google Scholar 

  21. Huang WC, Wu D, Xie Z et al (2006) beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66(18):9108–9116. doi:10.1158/0008-5472.CAN-06-1996

    Article  PubMed  CAS  Google Scholar 

  22. Zhou BP, Deng J, Xia W et al (2004) Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nat Cell Biol 6(10):931–940. doi:10.1038/ncb1173

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi N, Akatsu T, Udagawa N et al (1988) Osteoblastic cells are involved in osteoclast formation. Endocrinology 123(5):2600–2602

    PubMed  CAS  Google Scholar 

  24. Fichtner-Feigl S, Strober W, Kawakami K et al (2006) IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med 12(1):99–106. doi:10.1038/nm1332

    Article  PubMed  CAS  Google Scholar 

  25. Kawakami K (2005) Cancer gene therapy utilizing interleukin-13 receptor alpha2 chain. Curr Gene Ther 5(2):213–223. doi:10.2174/1566523053544227

    Article  PubMed  CAS  Google Scholar 

  26. Mori K, Le Goff B, Charrier C et al (2007) DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process. Bone 40(4):981–990. doi:10.1016/j.bone.2006.11.006

    Article  PubMed  CAS  Google Scholar 

  27. Vessella RL, Corey E (2006) Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis. Clin Cancer Res 12(20 Pt 2):6285s–6290s. doi:10.1158/1078-0432.CCR-06-0813

    Article  PubMed  CAS  Google Scholar 

  28. Armstrong AP, Miller RE, Jones JC et al (2008) RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 68(1):92–104. doi:10.1002/pros.20678

    Article  PubMed  CAS  Google Scholar 

  29. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. doi:10.1038/nrc867

    Article  PubMed  CAS  Google Scholar 

  30. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664. doi:10.1056/NEJMra030831

    Article  PubMed  CAS  Google Scholar 

  31. Chamulitrat W, Schmidt R, Chunglok W et al (2003) Epithelium and fibroblast-like phenotypes derived from HPV16 E6/E7-immortalized human gingival keratinocytes following chronic ethanol treatment. Eur J Cell Biol 82(6):313–322. doi:10.1078/0171-9335-00317

    Article  PubMed  CAS  Google Scholar 

  32. Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140(10):4451–4458. doi:10.1210/en.140.10.4451

    Article  PubMed  CAS  Google Scholar 

  33. Schwaninger R, Rentsch CA, Wetterwald A et al (2007) Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol 170(1):160–175. doi:10.2353/ajpath.2007.051276

    Article  PubMed  CAS  Google Scholar 

  34. Yamashita S, Miyagi C, Fukada T et al (2004) Zinc transporter LIVI controls epithelial–mesenchymal transition in zebrafish gastrula organizer. Nature 429(6989):298–302. doi:10.1038/nature02545

    Article  PubMed  CAS  Google Scholar 

  35. Arnold RCL, Farah-Carson MC et al (2008) Prostate cancer bone metastasis: reactive oxygen species, growth factors and heparan sulfate proteoglycans provide a signaling triad that supports progression. J Urol 179(Suppl 4):192

    Google Scholar 

  36. Chaffer CL, Brennan JP, Slavin JL et al (2006) Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66(23):11271–11278. doi:10.1158/0008-5472.CAN-06-2044

    Article  PubMed  CAS  Google Scholar 

  37. Vincan E, Brabletz T, Faux MC et al (2007) A human three-dimensional cell line model allows the study of dynamic and reversible epithelial–mesenchymal and mesenchymal–epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs 185(1–3):20–28. doi:10.1159/000101299

    Article  PubMed  Google Scholar 

  38. Willipinski-Stapelfeldt B, Riethdorf S, Assmann V et al (2005) Changes in cytoskeletal protein composition indicative of an epithelial–mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11(22):8006–8014. doi:10.1158/1078-0432.CCR-05-0632

    Article  PubMed  CAS  Google Scholar 

  39. Cat B, Stuhlmann D, Steinbrenner H et al (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119(Pt 13):2727–2738. doi:10.1242/jcs.03011

    Article  PubMed  CAS  Google Scholar 

  40. Lee JM, Dedhar S, Kalluri R et al (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981. doi:10.1083/jcb.200601018

    Article  PubMed  CAS  Google Scholar 

  41. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142. doi:10.1038/nrm1835

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gary Mawyer for editing. The helpful discussion and support from Guodong Zhu, Weiping Qian, Daqing Wu and Clayton Yates are greatly appreciated. The authors are particularly indebted to the helpful suggestions made by the editors, Drs. Rik Thompson and Elizabeth Williams, during the revision of this manuscript. This study was supported in part by CA082739 (HYEZ), U54 CA119338, CA098912 and CA766201 (LWKC). We are grateful to the generous gift from Frances and Clarence Wilkins in support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiyen E. Zhau or Leland W. K. Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhau, H.E., Odero-Marah, V., Lue, HW. et al. Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin Exp Metastasis 25, 601–610 (2008). https://doi.org/10.1007/s10585-008-9183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9183-1

Keywords

Navigation