Skip to main content

Advertisement

Log in

MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

MicroRNAs (miRs) are a novel class of RNAs with important roles in regulating gene expression. To identify miRs controlling prostate tumor progression, we utilized unique human prostate sublines derived from the parental P69 cell line, which differ in their tumorigenic properties in vivo. Grown embedded in laminin-rich extracellular matrix (lrECM) gels these genetically-related sublines displayed drastically different morphologies correlating with their behaviour in vivo. The non-tumorigenic P69 subline grew as multicellular acini with a defined lumen and basal/polar expression of relevant marker proteins. M12, a highly tumorigenic, metastatic derivative, grew as a disorganized mass of cells with no polarization, whereas the F6 subline, a weakly tumorigenic, non-metastatic M12 variant, reverted to acini formation akin to the P69 cell line. These sublines also differed in expression of vimentin, which was high in M12, but low in F6 and P69 sublines. Analysis of vimentin’s conserved 3′-UTR suggested several miRs that could regulate vimentin expression. The lack of miR-17-3p expression correlated with an increase in vimentin synthesis and tumorigenicity. Stable expression of miR-17-3p in the M12 subline reduced vimentin levels 85% and reverted growth to organized, polarized acini in lrECM gels. In vitro motility and invasion assays suggested a decrease in tumorigenic behaviour, confirmed by reduced tumor growth in male athymic, nude mice dependent on miR-17-3p expression. Analysis of LCM-purified clinical human prostatectomy specimens confirmed that miR-17-3p levels were reduced in tumor cells. These results suggest that miR-17-3p functions as a tumor suppressor, representing a novel target to block prostate tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chr19:

Chromosome 19

EMT:

Epithelial mesenchymal transition

FFPE:

Formalin-fixed paraffin embedded

IFP:

Intermediate filament protein

IPROS:

Intra-prostatic injection

LCM:

Laser capture microdissection

LrECM:

Laminin-rich extracellular matrix

miR(s):

microRNA(s)

nts:

Nucleotides

qRT-PCR:

Quantitative real time-polymerase chain reaction

3D:

Three dimensional

SC:

Subcutaneous

SYBR Green:

Synergy brands green

References

  1. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  PubMed  CAS  Google Scholar 

  2. Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197

    Article  PubMed  CAS  Google Scholar 

  3. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  4. Boehm M, Slack FJ (2006) MicroRNA control of lifespan and metabolism. Cell Cycle 5:837–840

    PubMed  CAS  Google Scholar 

  5. Calin GA, Liu CG, Sevignani C et al (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  PubMed  CAS  Google Scholar 

  6. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  7. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  8. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  PubMed  CAS  Google Scholar 

  9. Shi XB, Tepper CG, White VW (2008) MicroRNAs and prostate cancer. J Cell Mol Med 12(58):1456–1465

    Article  PubMed  CAS  Google Scholar 

  10. Bae VL, Jackson-Cook CK, Brothman AR et al (1994) Tumorigenicity of SV40 T antigen immortalized human prostate epithelial cells: association with decreased epidermal growth factor receptor (EGFR) expression. Int J Cancer 58:721–729

    Article  PubMed  CAS  Google Scholar 

  11. Bae VL, Jackson-Cook CK, Maygarden SJ et al (1998) Metastatic sublines of an SV40 large T antigen immortalized human prostate epithelial cell line. Prostate 34:275–282

    Article  PubMed  CAS  Google Scholar 

  12. Astbury C, Jackson-Cook CK, Culp SH et al (2001) Suppression of tumorigenicity in the human prostate cancer cell line M12 via microcell-mediated restoration of chromosome 19. Genes Chromosomes Cancer 31:143–155

    Article  PubMed  CAS  Google Scholar 

  13. Zhang X, Fournier M, Ware JL et al (2009) Inhibition of vimentin or β1-integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Can Ther 8(3):499–508

    Article  CAS  Google Scholar 

  14. Liu X, Wu Y, Zehner ZE et al (2003) Proteomic analysis of the tumorigenic human prostate cell line M12 after microcell-mediated transfer of chromosome 19 demonstrates reduction of vimentin. Electrophoresis 24:3445–3453

    Article  PubMed  CAS  Google Scholar 

  15. Lang SH, Hyde C, Reid IN et al (2002) Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate 52:253–263

    Article  PubMed  CAS  Google Scholar 

  16. Zhao Y, Yan Q, Long X et al (2008) Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem Funct 26:571–577

    Article  PubMed  CAS  Google Scholar 

  17. Zehner ZE, Shepherd RK, Gabryszuk J et al (1997) RNA–protein interactions within the 3′ untranslated region of vimentin mRNA. Nucl Acids Res 25:3362–3370

    Article  PubMed  CAS  Google Scholar 

  18. Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249

    Article  PubMed  CAS  Google Scholar 

  19. Ambros V (2004) The function of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  20. Mendell JT (2008) miRiad roles for the miR-17–92 cluster in development and disease. Cell 133:217–222

    Article  PubMed  CAS  Google Scholar 

  21. Gurel B, Iwata T, Koh M et al (2008) Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 21:1156–1167

    Article  PubMed  CAS  Google Scholar 

  22. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  CAS  Google Scholar 

  23. Thalmann GN, Anezinis PE, Chang SM et al (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54:2577–2581

    PubMed  CAS  Google Scholar 

  24. Yacoub A, McKinstry R, Hinman D et al (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in Du145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–452

    Article  PubMed  CAS  Google Scholar 

  25. Hegan M, Yacoub A, Dent P (2004) Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clin Cancer Res 10:5724–5731

    Article  Google Scholar 

  26. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  PubMed  CAS  Google Scholar 

  27. Zhang X, Diab IH, Zehner ZE (2003) ZBP-89 represses vimentin gene transcription by interacting with the transcriptional activator, Sp1. Nucl Acids Res 31:2900–2914

    Article  PubMed  CAS  Google Scholar 

  28. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT–PCR. Nucleic Acids Res 33:e179

    Article  PubMed  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  30. Gleason DF, Mellinger GΤ (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64

    PubMed  CAS  Google Scholar 

  31. Epstein JI, Yang XJ (2002) Prostate biopsy interpretation, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 54–176

    Google Scholar 

  32. Paccione RJ, Miyazaki H, Patel V et al (2008) Keratin downregulation in vimentin-positive cancer cells is reversible by vimentin RNAi, which inhibits growth and motility. Mol Cancer Ther 7:2898–2903

    Article  CAS  Google Scholar 

  33. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  34. Bermano G, Shepherd RK, Zehner ZE et al (2001) Perinuclear mRNA localisation by vimentin 3′-untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett 497:77–81

    Article  PubMed  CAS  Google Scholar 

  35. Griffiths-Jones S, Grocock RJ, vanDongen S et al (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res 34:D140–D144

    Article  PubMed  CAS  Google Scholar 

  36. Chiosea S, Jelezcova E, Chandran U et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery in prostate adenocarcinoma. Am J Pathol 169:1812–1820

    Article  PubMed  CAS  Google Scholar 

  37. Singh S, Sadacharan S, Su S et al (2003) Overexpression of vimentin: role in the invasive phenotype in an androgen-independent model of prostate cancer. Cancer Res 63:2306–2311

    PubMed  CAS  Google Scholar 

  38. Eckes B, Dogic D, Colucci-Guyon E et al (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111:1897–1907

    PubMed  CAS  Google Scholar 

  39. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    Article  PubMed  CAS  Google Scholar 

  40. Li J, Smyth P, Flavin R et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 29(7):36

    Article  CAS  Google Scholar 

  41. Doleshal M, Magotra AA, Choudhury B (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10(3):203–211

    Article  PubMed  CAS  Google Scholar 

  42. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of microRNA binding sties and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  PubMed  CAS  Google Scholar 

  43. Nishida M, Kato M, Kato Y et al (2007) Identification of ZNF200 as a novel binding partner of histone H3 methyltransferase G9a. Genes Cells 12:877–888

    Article  PubMed  CAS  Google Scholar 

  44. Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  PubMed  CAS  Google Scholar 

  45. Walter M, Chen FW, Tamari F et al (2009) Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol Cell 101:141–152

    Article  PubMed  CAS  Google Scholar 

  46. Chaurand P, Rahman MA, Hunt T et al (2008) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423

    PubMed  CAS  Google Scholar 

  47. Choi KJ, Piao YJ, Lim MJ et al (2007) Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res 67:3654–3662

    Article  PubMed  CAS  Google Scholar 

  48. Legros F, Lombes A, Frachon P et al (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13:4343–4354

    Article  PubMed  CAS  Google Scholar 

  49. Chen H, Detmer SA, Ewald AJ et al (2003) Mitofusions Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential fro embryonic development. J Cell Biol 160:189–200

    Article  PubMed  CAS  Google Scholar 

  50. Birkenfeld J, Nalbant P, Bohl BP et al (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Devel Cell 12:699–712

    Article  CAS  Google Scholar 

  51. Chang Y-C, Nalbant P, Birkenfeld J (2009) GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 19:2147–2153

    Article  CAS  Google Scholar 

  52. Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods 44:47–54

    Article  PubMed  CAS  Google Scholar 

  53. Eckes B, Colucci-Guyon E, Smola H et al (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113:2455–2462

    PubMed  CAS  Google Scholar 

  54. Gaur A, Jewell DA, Liang Y et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  PubMed  CAS  Google Scholar 

  55. Ozen M, Creighton CJ, Ozdemir M et al (2008) Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27:1788–1793

    Article  PubMed  CAS  Google Scholar 

  56. Porkka KP, Pfeiffer MJ, Waltering KK et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    Article  PubMed  CAS  Google Scholar 

  57. Ambs S, Prueitt RL, Yi M et al (2008) Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 68:6162–6170

    Article  PubMed  CAS  Google Scholar 

  58. McNamara JO, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimerase. Nat Biotechnol 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Frances K. White and the confocal imaging facility from the Massey Cancer Center supported in part by NIH Grant P30CA16059, Dr. Stephen Plymate for the LNCaP-L, C4, and C4-2 cell lines, and Dr. Adly Yacoub for LNCaP-A and xenograft LNCaP-F2 cells. Grant support was from the Commonwealth Health Research Board (CHRB) to ZEZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zendra E. Zehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Ladd, A., Dragoescu, E. et al. MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 26, 965–979 (2009). https://doi.org/10.1007/s10585-009-9287-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-009-9287-2

Keywords

Navigation