Skip to main content

Advertisement

Log in

Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Accumulation of fibroblasts is a phenomenon that significantly correlates with formation of aggressive cancers. While studies have shown that the TGF-β signaling pathway is an important regulator of fibroblast activation, the functional contribution of TGF-β signaling in fibroblasts during multi-step tumor progression remains largely unclear. In previous studies, we used a sub-renal capsule transplantation model to demonstrate that homozygous knockout of the Tgfbr2 gene (Tgbr2FspKO) enhanced mammary tumor growth and metastasis. Here, we show for the first time a significant role for loss of one Tgfbr2 allele during multi-step mammary tumor progression. Heterozygous deletion of Tgfbr2 in stromal cells in MMTV–PyVmT transgenic mice (PyVmT/Tgfbr2hetFspKO mice) resulted in earlier tumor formation and increased stromal cell accumulation. In contrast to previous studies of Tgbr2FspKO fibroblasts, Tgfbr2hetFspKO fibroblasts did not significantly increase tumor growth, but enhanced lung metastasis in PyVmT transgenic mice and in co-transplantation studies with PyVmT mammary carcinoma cells. Furthermore, Tgfbr2hetFspKO fibroblasts enhanced mammary carcinoma cell invasiveness associated with expression of inflammatory cytokines including CXCL12 and CCL2. Analyses of Tgbr2FspKO and Tgfbr2hetFspKO fibroblasts revealed differences in the expression of factors associated with metastatic spread, indicating potential differences in the mechanism of action between homozygous and heterozygous deletion of Tgfbr2 in stromal cells. In summary, these studies demonstrate for the first time that loss of one Tgfbr2 allele in fibroblasts enhances mammary metastases in a multi-step model of tumor progression, and demonstrate the importance of clarifying the functional contribution of genetic alterations in stromal cells in breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCL2:

Chemokine (C–C motif) ligand 2

CXCL12:

Chemokine (C–X–C motif) ligand 12

Fsp1:

Fibroblast specific protein 1

HGF:

Hepatocyte growth factor

MMTV:

Mouse mammary tumor virus promoter

PyVmT:

Polyoma virus middle T

α-sma:

Alpha smooth muscle actin

TGF-β:

Transforming growth factor beta

Tgfbr2 :

TGF-beta type II receptor gene

Tgfbr2FspKO :

Homozygous deletion of Tgfbr2 in stromal cells

Tgfbr2hetFspKO :

Heterozygous deletion of Tgfbr2 in stromal cells

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

VWF8:

Von Willebrand factor 8

WT:

Wildtype

References

  1. Barrett-Lee P, Travers M, Luqmani Y et al (1990) Transcripts for transforming growth factors in human breast cancer: clinical correlates. Br J Cancer 61(4):612–617

    Article  PubMed  CAS  Google Scholar 

  2. Desmouliere A, Guyot C, Gabbiani G (2004) The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 48(5–6):509–517

    Article  PubMed  CAS  Google Scholar 

  3. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  PubMed  CAS  Google Scholar 

  4. Camps J, Chang S, Hsu T et al (1990) Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc Natl Acad Sci USA 87:75–79

    Article  PubMed  CAS  Google Scholar 

  5. Sakakura T, Sakagami Y, Nishizuka Y (1981) Accelerated mammary cancer development by fetal salivary mesenchyma isografted to adult mouse mammary epithelium. J Natl Cancer Inst 66(5):953–959

    PubMed  CAS  Google Scholar 

  6. Shekhar MP, Werdell J, Santner SJ et al (2001) Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res 61:1320–1326

    PubMed  CAS  Google Scholar 

  7. Kurose K, Gilley K, Matsumoto S et al (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32(3):355–357

    Article  PubMed  CAS  Google Scholar 

  8. Hagedorn H, Bachmeir B, Nerlich A (2001) Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas (review). Int J Oncol 18(4):669–681

    PubMed  CAS  Google Scholar 

  9. Lei X, Bandyopadhyay A, Le T, Sun L (2002) Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene 21:7514–7523

    Article  PubMed  CAS  Google Scholar 

  10. Tuxhorn J, McAlhany S, Yang F et al (2002) Inhibition of transforming growth factor B activity decreases angiogenesis in human prostate cancer-reactive stroma-xenograft model. Cancer Res 62:6021–6025

    PubMed  CAS  Google Scholar 

  11. Joseph H, Gorska AE, Sohn P et al (1999) Overexpression of a kinase-deficient transforming growth factor-B type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 10:1221–1234

    PubMed  CAS  Google Scholar 

  12. Paoloni-Giacobino A, Rossier C, Papasavvas MP et al (2001) Frequency of replication/transcription errors in (A)/(T) runs of human genes. Hum Genet 109(1):40–47

    Article  PubMed  CAS  Google Scholar 

  13. Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077

    Article  PubMed  CAS  Google Scholar 

  14. Lawrenson K, Grun B, Benjamin E et al (2010) Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia 12(4):317–325

    PubMed  CAS  Google Scholar 

  15. Bian Y, Knobloch TJ, Sadim M et al (2007) Somatic acquisition of TGFBR1*6A by epithelial and stromal cells during head and neck and colon cancer development. Hum Mol Genet 16(24):3128–3135

    Article  PubMed  CAS  Google Scholar 

  16. ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29(5):265–273

    Article  PubMed  CAS  Google Scholar 

  17. McCaffrey TA, Falcone DJ (1993) Evidence for an age-related dysfunction in the antiproliferative response to transforming growth factor-beta in vascular smooth muscle cells. Mol Biol Cell 4(3):315–322

    PubMed  CAS  Google Scholar 

  18. Angeli F, Koumakis G, Chen MC et al (2009) Role of stromal fibroblasts in cancer: promoting or impeding? Tumour Biol 30(3):109–120

    Article  PubMed  CAS  Google Scholar 

  19. Bhowmick N, Chytiil A, Plieth D et al (2004) TGF-ß signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:847–851

    Article  Google Scholar 

  20. Cheng N, Bhowmick NA, Chytil A et al (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24(32):5053–5068

    Article  PubMed  CAS  Google Scholar 

  21. Guy C, Cardiff R, Muller W (1992) Induction of mammary tumors by expression a polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961

    PubMed  CAS  Google Scholar 

  22. Lin E, Jones J, Zhu L et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Path 163(5):2113–2126

    Article  PubMed  Google Scholar 

  23. Sugimoto H, Mundel TM, Kieran MW et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5(12):1640–1646

    Article  PubMed  CAS  Google Scholar 

  24. Hayward S, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63(3):131–140

    Article  PubMed  CAS  Google Scholar 

  25. Tang Z, Yu M, Miller F et al (2008) Increased invasion through basement membrane by CXCL7-transfected breast cells. Am J Surg 196(5):690–696

    Article  PubMed  CAS  Google Scholar 

  26. Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32

    Article  PubMed  CAS  Google Scholar 

  27. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  PubMed  CAS  Google Scholar 

  28. Yamashiro S, Takeya M, Nishi T et al (1994) Tumor-derived monocyte chemoattractant protein-1 induces intratumoral infiltration of monocyte-derived macrophage subpopulation in transplanted rat tumors. Am J Pathol 145(4):856–867

    PubMed  CAS  Google Scholar 

  29. Jia GQ, Gonzalo JA, Lloyd C et al (1996) Distinct expression and function of the novel mouse chemokine monocyte chemotactic protein-5 in lung allergic inflammation. J Exp Med 184(5):1939–1951

    Article  PubMed  CAS  Google Scholar 

  30. Abramson N, Castro S, Goldstein JD (1997) Lipid-laden macrophage infiltration of human adenocarcinoma in vivo associated with taxol and GCSF treatment. Cancer Invest 15(1):18–22

    Article  PubMed  CAS  Google Scholar 

  31. Xu BJ, Yan W, Jovanovic B et al (2010) Quantitative analysis of the secretome of TGF-beta signaling-deficient mammary fibroblasts. Proteomics 10:2458

    Article  PubMed  CAS  Google Scholar 

  32. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  CAS  Google Scholar 

  33. Kim SY, Lee CH, Midura BV et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25(3):201–211

    Article  PubMed  CAS  Google Scholar 

  34. Cheng N, Chytil A, Shyr Y et al (2007) Enhanced hepatocyte growth factor signaling by type II transforming growth factor-{beta} receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res 67(10):4869–4877

    Article  PubMed  CAS  Google Scholar 

  35. Hembruff SL, Jokar I, Yang L et al (2010) Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia 12(5):425–433

    PubMed  CAS  Google Scholar 

  36. Robinson S, Silberstein G, Roberts A et al (1991) Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867–878

    PubMed  CAS  Google Scholar 

  37. Cunha G, Hom Y (1996) Role of mesenchymal-epithelial interactions in mammary gland development. J Mamm Gland Biol 1(1):21–34

    Article  CAS  Google Scholar 

  38. Gal A, Sjoblom T, Fedorova L et al (2008) Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27(9):1218–1230

    Article  PubMed  CAS  Google Scholar 

  39. Webster M, Hutchinson JN, Rauh MJ, Muthuswamy SK, Anton A, Tortorice CG, Cardiff RD, Graham FL, Hassell JA, Muller WJ (1998) Requirement of both Shc and Phosphatidyl 3′ kinase signaling pathways in polyomavirus middle T-mediated mammar tumorigenesis. Mol Cell Biol 18(4):2344–2359

    PubMed  CAS  Google Scholar 

  40. Foulkes WD, Reis-Filho JS, Narod SA (2010) Tumor size and survival in breast cancer—a reappraisal. Nat Rev Clin Oncol 7(6):348–353

    Article  PubMed  CAS  Google Scholar 

  41. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  PubMed  CAS  Google Scholar 

  42. DeNardo DG, Johansson M, Coussens LM (2008) Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27(1):11–18

    Article  PubMed  CAS  Google Scholar 

  43. Allavena P, Sica A, Solinas G et al (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66(1):1–9

    Article  PubMed  Google Scholar 

  44. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Article  PubMed  CAS  Google Scholar 

  45. Anders CK, Carey LA (2009) Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clin Breast Cancer 9(Suppl 2):S73–S81

    Article  PubMed  CAS  Google Scholar 

  46. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405

    Article  PubMed  CAS  Google Scholar 

  47. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9(4):239–252

    Article  PubMed  CAS  Google Scholar 

  48. Bierie B, Moses HL (2005) Under pressure: stromal fibroblasts change their ways. Cell 123(6):985–987

    Article  PubMed  CAS  Google Scholar 

  49. Fujimoto H, Sangai T, Ishii G et al (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284

    Article  PubMed  CAS  Google Scholar 

  50. Lu X, Kang Y (2009) Chemokine (C–C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284(42):29087–29096

    Article  PubMed  CAS  Google Scholar 

  51. Anastassiades OT, Pryce DM (1974) Fibrosis as in indication of time in infiltrating breast cancer and its importance in prognosis. Br J Cancer 29(3):232–239

    Article  PubMed  CAS  Google Scholar 

  52. Hasebe T, Tsuda H, Tsubono Y et al (1997) Fibrotic focus in invasive ductal carcinoma of the breast: a histopathological prognostic parameter for tumor recurrence and tumor death within three years after the initial operation. Jpn J Cancer Res 88(6):590–599

    PubMed  CAS  Google Scholar 

  53. Tamiolakis D, Papadopoulos N, Cheva A et al (2002) Immunohistochemical expression of alpha-smooth muscle actin in infiltrating ductal carcinoma of the breast with productive fibrosis. Eur J Gynaecol Oncol 23(5):469–471

    PubMed  CAS  Google Scholar 

  54. Karas M, Amir H, Fishman D et al (2000) Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr Cancer 36(1):101–111

    Article  PubMed  CAS  Google Scholar 

  55. Sciacca L, Costantino A, Pandini G et al (1999) Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene 18(15):2471–2479

    Article  PubMed  CAS  Google Scholar 

  56. Rahimi N, Saulnier R, Nakamura T et al (1994) Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol 13(12):1189–1197

    Article  PubMed  CAS  Google Scholar 

  57. Ma X, Norsworthy K, Kundu N et al (2009) CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol Cancer Ther 8(3):490–498

    Article  PubMed  CAS  Google Scholar 

  58. Dunn SE, Ehrlich M, Sharp NJ et al (1998) A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 58(15):3353–3361

    PubMed  CAS  Google Scholar 

  59. Sachdev D, Li SL, Hartell JS et al (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63(3):627–635

    PubMed  CAS  Google Scholar 

  60. Zhang X, Yang J, Li Y et al (2005) Both Sp1 and Smad participate in mediating TGF-beta1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 288(1):F16–F26

    Article  PubMed  CAS  Google Scholar 

  61. Chia DJ, Ono M, Woelfle J et al (2006) Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem 281(6):3190–3197

    Article  PubMed  CAS  Google Scholar 

  62. Cocolakis E, Dai M, Drevet L et al (2008) Smad signaling antagonizes STAT5-mediated gene transcription and mammary epithelial cell differentiation. J Biol Chem 283(3):1293–1307

    Article  PubMed  CAS  Google Scholar 

  63. Muraoka RS, Koh Y, Roebuck LR et al (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23(23):8691–8703

    Article  PubMed  CAS  Google Scholar 

  64. Schade B, Lam SH, Cernea D et al (2007) Distinct ErbB-2 coupled signaling pathways promote mammary tumors with unique pathologic and transcriptional profiles. Cancer Res 67(16):7579–7588

    Article  PubMed  CAS  Google Scholar 

  65. Wendt MK, Johanesen PA, Kang-Decker N et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25(36):4986–4997

    Article  PubMed  CAS  Google Scholar 

  66. (2007) Plerixafor: AMD 3100, AMD3100, JM 3100, SDZ SID 791. Drugs R D 8(2):113–119

  67. De Paepe B, Creus KK, De Bleecker JL (2008) Chemokines in idiopathic inflammatory myopathies. Front Biosci 13:2548–2577

    Article  PubMed  Google Scholar 

  68. Bieche I, Chavey C, Andrieu C et al (2007) CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocr Relat Cancer 14(4):1039–1052

    Article  PubMed  CAS  Google Scholar 

  69. Hembruff S, Cheng N (2009) Chemokine signaling in cancer: implications on the tumor microenvironment and therapeutic targeting. Cancer Therapy 7:254–267

    PubMed  CAS  Google Scholar 

  70. Bacman D, Merkel S, Croner R et al (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156

    Article  PubMed  Google Scholar 

  71. Bugge TH, Lund LR, Kombrinck KK et al (1998) Reduced metastasis of Polyoma virus middle T antigen-induced mammary cancer in plasminogen-deficient mice. Oncogene 16(24):3097–3104

    Article  PubMed  CAS  Google Scholar 

  72. Chytil A, Magnuson MA, Wright CVE et al (2002) Conditional inactivation of the TGF-B type II receptor using Cre-Lox. Genesis 32:73–75

    Article  PubMed  CAS  Google Scholar 

  73. Medina D, Kittrell F (2000) Establishment of mouse mammary cell lines. In: Ip MM, Asch BB (eds) Methods in mammary gland biology and breast cancer research. Kluwer Academic/Plenum Publishers, New York, pp 137–147

    Google Scholar 

  74. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M, Bottinger EP (2000) A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 2(14):187–197

    Google Scholar 

Download references

Acknowledgments

We thank Stacey Hembruff for technical assistance, Fang Fan, M.D (University of Kansas Medical Center), Osama Tawfik, M.D (University of Kansas Medical Center), Roy Jensen, M.D (University of Kansas Medical Center), and Rebecca Cook, Ph.D (Vanderbilt University, Nashville, TN) for scientific discussion. This work was supported by the following grants: CA102162 and CA85492 (National Cancer Institute DHHS), and the TJ Martell Foundation to HL Moses, CA127357-01A2 (National Cancer Institute DHHS) and University of Kansas Endowment to N Cheng.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikki Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 865 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, W.B., Jokar, I., Chytil, A. et al. Loss of one Tgfbr2 allele in fibroblasts promotes metastasis in MMTV: polyoma middle T transgenic and transplant mouse models of mammary tumor progression. Clin Exp Metastasis 28, 351–366 (2011). https://doi.org/10.1007/s10585-011-9373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9373-0

Keywords

Navigation