Skip to main content

Advertisement

Log in

Tumor microenvironment: a main actor in the metastasis process

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Over recent decades, various studies have argued that the metastatic tissue microenvironment is fully controlled by the intrinsic properties of the cancer cells (growth, motility and invasion, angiogenesis, extracellular matrix remodeling, immune escape) and additional cells types. Overall, the extrinsic factors and determinants mediate the contribution of the host microenvironment to metastasis formation. The tumor microenvironment carries out these functions by secretion of molecules that can influence and modulate its phenotype, making these complex interactions the basis for support for the progression of a cancer. Here, we undertake a summary of the “state of the art” of the functions and actions of these cells, as the main actors in the promotion of the formation of the microenvironment of the metastatic niche, and the associated network of interactions. The unraveling of the relationships between tumorigenic cells and their microenvironment represents an important issue for the development of new therapeutic agents that can fight both initiation and recurrence of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

CAFs:

Cancer-associated fibroblasts

MHC:

Major histocompatibility complex

TAMs:

Tumor-associated macrophages

MDSCs:

Myeloid-derived suppressor cells

TNC:

Tenascin C

MCP1:

Monocyte chemotactic protein 1

IL:

Interleukin

MMP:

Matrix metalloproteinase

VEGF:

Vascular endothelial growth factor

TGF-β:

Transforming growth factor-β

HGF:

Hepatocyte growth factor

SDF1:

Stromal-cell-derived factor 1

TIMP:

Tissue inhibitors of MMP

MAP:

Mitogen-activated protein

PyMT:

Polyoma middle T

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

COX-2:

Cyclooxygenase-2

uPA:

Urokinase plasminogen activator

CSF-1:

Colony stimulating factor 1

LLC:

Lewis lung carcinoma

TNF-α:

Tumor-necrosis factor-α

TLR:

Toll-like receptor

Tregs:

Regulatory T cells

PGE2:

Prostaglandin E2

SCF:

Stem cell factor

iNOS:

Nitric oxide synthase

ARG1:

Arginase 1

TCR:

T-cell receptor

NO:

Nitric oxide

ROS:

Reactive oxygen species

SAA3:

Serum amyloid A3

LOX:

Lysyl oxidase

FGF2:

Fibroblast growth factor-2

G-CSF:

Granulocyte colony stimulating factor

M-CSF:

Macrophage colony stimulating factor

FBLN5:

Fibulin-5

IFN:

Interferon

References

  1. Nguyen DX, Massagué J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    Article  PubMed  CAS  Google Scholar 

  2. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    Article  PubMed  CAS  Google Scholar 

  3. Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171

    Article  PubMed  CAS  Google Scholar 

  4. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  5. Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89:31–39

    Article  PubMed  CAS  Google Scholar 

  6. Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176:528–535

    Article  PubMed  CAS  Google Scholar 

  7. Boye K, Grotterød I, Aasheim HC, Hovig E, Maelandsmo GM (2008) Activation of NF-kappaB by extracellular S100A4: analysis of signal transduction mechanisms and identification of target genes. Int J Cancer 123:1301–1310

    Article  PubMed  CAS  Google Scholar 

  8. Klingelhöfer J, Møller HD, Sumer EU, Berg CH, Poulsen M, Kiryushko D, Soroka V, Ambartsumian N, Grigorian M, Lukanidin EM (2009) Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein. FEBS J 276:5936–5948

    Article  PubMed  CAS  Google Scholar 

  9. Forst B, Hansen MT, Klingelhöfer J, Møller HD, Nielsen GH, Grum-Schwensen B, Ambartsumian N, Lukanidin E, Grigorian M (2010) Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice. PLoS One 5:e10374

    Article  PubMed  CAS  Google Scholar 

  10. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163:2113–2126

    Article  PubMed  Google Scholar 

  11. Grum-Schwensen B, Klingelhöfer J, Grigorian M, Almholt K, Nielsen BS, Lukanidin E, Ambartsumian N (2010) Lung metastasis fails in MMTV-PyMT oncomice lacking S100A4 due to a T-cell deficiency in primary tumors. Cancer Res 70:936–947

    Article  PubMed  CAS  Google Scholar 

  12. Lotfi R, Lee JJ, Lotze MT (2007) Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30:16–28

    Article  PubMed  CAS  Google Scholar 

  13. Cheadle EJ, Riyad K, Subar D, Rothwell DG, Ashton G, Batha H, Sherlock DJ, Hawkins RE, Gilham DE (2007) Eotaxin-2 and colorectal cancer: a potential target for immune therapy. Clin Cancer Res 13:5719–5728

    Article  PubMed  CAS  Google Scholar 

  14. Piscaglia AC, Shupe TD, Pani G, Tesori V, Gasbarrini A, Petersen BE (2009) Establishment of cancer cell lines from rat hepatocholangiocarcinoma and assessment of the role of granulocyte-colony stimulating factor and hepatocyte growth factor in their growth, motility and survival. J Hepatol 51:77–92

    Article  PubMed  CAS  Google Scholar 

  15. Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106:6742–6747

    Article  PubMed  CAS  Google Scholar 

  16. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176:1564–1576

    Article  PubMed  Google Scholar 

  17. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Article  PubMed  Google Scholar 

  18. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  19. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  20. Mantovani A (2010) Molecular pathways linking inflammation and cancer. Curr Mol Med 10:369–373

    Article  PubMed  CAS  Google Scholar 

  21. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  PubMed  CAS  Google Scholar 

  22. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  PubMed  CAS  Google Scholar 

  23. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  PubMed  CAS  Google Scholar 

  24. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84:623–630

    Article  PubMed  CAS  Google Scholar 

  25. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  26. Lin EY, Nguyen AV, Russell RG, Pollard JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740

    Article  PubMed  CAS  Google Scholar 

  27. Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270

    Article  PubMed  CAS  Google Scholar 

  28. DeNardo DG, Johansson M, Coussens LM (2008) Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Rev 27:11–18

    Article  PubMed  CAS  Google Scholar 

  29. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  30. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  PubMed  CAS  Google Scholar 

  31. Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S (2004) Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol 99:1667–1674

    Article  PubMed  CAS  Google Scholar 

  32. Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94:101–107

    Article  PubMed  CAS  Google Scholar 

  33. Hotchkiss KA, Ashton AW, Klein RS, Lenzi ML, Zhu GH, Schwartz EL (2003) Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Res 63:527–533

    PubMed  CAS  Google Scholar 

  34. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  PubMed  CAS  Google Scholar 

  35. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192:150–158

    Article  PubMed  CAS  Google Scholar 

  36. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S, Saccani S, Nebuloni M, Vago L, Mantovani A, Melillo G, Sica A (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402

    Article  PubMed  CAS  Google Scholar 

  37. Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25:677–694

    Article  PubMed  Google Scholar 

  38. Vasiljeva O, Papazoglou A, Krüger A, Brodoefel H, Korovin M, Deussing J, Augustin N, Nielsen BS, Almholt K, Bogyo M, Peters C, Reinheckel T (2006) Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res 66:5242–5250

    Article  PubMed  CAS  Google Scholar 

  39. Hagemann T, Robinson SC, Schulz M, Trümper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  PubMed  CAS  Google Scholar 

  40. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  41. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, Stanley ER, Segall JE, Condeelis JS (2005) Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 65:5278–5283

    Article  PubMed  CAS  Google Scholar 

  42. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trümper L, Binder C (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA 103:5454–5459

    Article  PubMed  CAS  Google Scholar 

  43. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184:702–712

    Article  PubMed  CAS  Google Scholar 

  44. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    Article  PubMed  CAS  Google Scholar 

  45. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  Google Scholar 

  46. Nagaraj S, Gabrilovich DI (2008) Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res 68:2561–2563

    Article  PubMed  CAS  Google Scholar 

  47. Nagaraj S, Gabrilovich DI (2010) Myeloid-derived suppressor cells in human cancer. Cancer J 16:348–353

    Article  PubMed  CAS  Google Scholar 

  48. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59

    Article  PubMed  CAS  Google Scholar 

  49. Yang L, Moses HL (2008) Transforming growth factor beta: tumor suppressor or promoter? Are host immune cells the answer? Cancer Res 68:9107–9111

    Article  PubMed  CAS  Google Scholar 

  50. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    Article  PubMed  CAS  Google Scholar 

  51. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  52. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  53. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  54. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    PubMed  CAS  Google Scholar 

  55. Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145

    Article  PubMed  CAS  Google Scholar 

  56. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  PubMed  CAS  Google Scholar 

  57. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228

    Article  PubMed  CAS  Google Scholar 

  58. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, Shono Y, Kitabatake M, Kakimi K, Mukaida N, Matsushima K (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466

    Article  PubMed  CAS  Google Scholar 

  59. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  Google Scholar 

  60. Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S (2009) Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol 183:937–944

    Article  PubMed  CAS  Google Scholar 

  61. Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    Article  PubMed  Google Scholar 

  62. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    Article  PubMed  CAS  Google Scholar 

  63. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  PubMed  CAS  Google Scholar 

  64. Serafini P, Mgebroff S, Noonan K, Borrello I (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449

    Article  PubMed  CAS  Google Scholar 

  65. Nizar S, Copier J, Meyer B, Bodman-Smith M, Galustian C, Kumar D, Dalgleish A (2009) T-regulatory cell modulation: the future of cancer immunotherapy? Br J Cancer 100:1697–1703

    Article  PubMed  CAS  Google Scholar 

  66. Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20:2366–2368

    Article  PubMed  CAS  Google Scholar 

  67. Williams CM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105:847–859

    Article  PubMed  CAS  Google Scholar 

  68. Benoist C, Mathis D (2002) Mast cells in autoimmune disease. Nature 420:875–878

    Article  PubMed  CAS  Google Scholar 

  69. Terada T, Matsunaga Y (2000) Increased mast cells in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Hepatol 33:961–966

    Article  PubMed  CAS  Google Scholar 

  70. Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, Bentrem DJ (2010) Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16:2257–2265

    Article  PubMed  CAS  Google Scholar 

  71. Melillo RM, Guarino V, Avilla E, Galdiero MR, Liotti F, Prevete N, Rossi FW, Basolo F, Ugolini C, de Paulis A, Santoro M, Marone G (2010) Mast cells have a protumorigenic role in human thyroid cancer. Oncogene 29:6203–6215

    Article  PubMed  CAS  Google Scholar 

  72. Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L (2010) Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep 23:615–619

    PubMed  CAS  Google Scholar 

  73. Dabbous MK, Haney L, Nicolson GL, Eckley D, Woolley DE (1991) Mast cell modulation of tumour cell proliferation in rat mammary adenocarcinoma 13762NF. Br J Cancer 63:873–878

    Article  PubMed  CAS  Google Scholar 

  74. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279

    Article  PubMed  CAS  Google Scholar 

  75. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  PubMed  CAS  Google Scholar 

  76. Datta YH, Romano M, Jacobson BC, Golan DE, Serhan CN, Ewenstein BM (1995) Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells. Circulation 92:3304–3311

    PubMed  CAS  Google Scholar 

  77. Boyce JA (2007) Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol Rev 217:168–185

    Article  PubMed  CAS  Google Scholar 

  78. Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269:1–6

    Article  PubMed  CAS  Google Scholar 

  79. Mekori YA, Metcalfe DD (1999) Mast cell-T cell interactions. J Allergy Clin Immunol 104:517–523

    Article  PubMed  CAS  Google Scholar 

  80. Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019

    Article  PubMed  CAS  Google Scholar 

  81. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    Article  PubMed  CAS  Google Scholar 

  82. Conti P, Castellani ML, Kempuraj D, Salini V, Vecchiet J, Tetè S, Mastrangelo F, Perrella A, De Lutiis MA, Tagen M, Theoharides TC (2007) Role of mast cells in tumor growth. Ann Clin Lab Sci 37:315–322

    PubMed  CAS  Google Scholar 

  83. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  84. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited-The role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128:2527–2535

    Article  PubMed  CAS  Google Scholar 

  85. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  PubMed  CAS  Google Scholar 

  86. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  87. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y (2008) The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10:1349–1355

    Article  PubMed  CAS  Google Scholar 

  88. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT, Giaccia AJ (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15:35–44

    Article  PubMed  CAS  Google Scholar 

  89. Fogelgren B, Polgár N, Szauter KM, Ujfaludi Z, Laczkó R, Fong KS, Csiszar K (2005) Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem 280:24690–24697

    Article  PubMed  CAS  Google Scholar 

  90. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, Downey RJ, Manova-Todorova K, Brogi E, Massagué J (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17:867–874

    Article  PubMed  CAS  Google Scholar 

  91. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    Article  PubMed  CAS  Google Scholar 

  92. Wai PY, Kuo PC (2008) Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27:103–118

    Article  PubMed  CAS  Google Scholar 

  93. Bellahcène A, Castronovo V, Ogbureke KU, Fisher LW, Fedarko NS (2008) Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 8:212–226

    Article  PubMed  CAS  Google Scholar 

  94. Møller HD, Ralfkjær U, Cremers N, Frankel M, Pedersen RT, Klingelhöfer J, Yanagisawa H, Grigorian M, Guldberg P, Sleeman J, Lukanidin E, Ambartsumian N (2011) Role of fibulin-5 in metastatic organ colonization. Mol Cancer Res 9:553–563

    Article  PubMed  Google Scholar 

  95. Hernandez L, Smirnova T, Kedrin D, Wyckoff J, Zhu L, Stanley ER, Cox D, Muller WJ, Pollard JW, Van Rooijen N, Segall JE (2009) The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12. Cancer Res 69:3221–3227

    Article  PubMed  CAS  Google Scholar 

  96. Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562

    Article  PubMed  CAS  Google Scholar 

  97. Gonda TA, Varro A, Wang TC, Tycko B (2010) Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol 21:2–10

    Article  PubMed  CAS  Google Scholar 

  98. Groot Kormelink T, Abudukelimu A, Redegeld FA (2009) Mast cells as target in cancer therapy. Curr Pharm Des 15:1868–1878

    Article  PubMed  CAS  Google Scholar 

  99. Joseph IB, Isaacs JT (1998) Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 90:1648–1653

    Article  PubMed  CAS  Google Scholar 

  100. Robinson SC, Scott KA, Wilson JL, Thompson RG, Proudfoot AE, Balkwill FR (2003) A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res 63:8360–8365

    PubMed  CAS  Google Scholar 

  101. Tadmor T, Attias D, Polliack A (2011) Myeloid-derived suppressor cells—their role in haemato-oncological malignancies and other cancers and possible implications for therapy. Br J Haematol 153:557–567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge European GRANT-FP7-Tumic HEALTH-F2-2008-201662 (MZ). Associazione Italiana per la Ricerca sul Cancro, AIRC (MZ) and Associazione Italiana per la Lotta al Neuroblastoma 2008–2010 (MZ), PRIN 2008 E5AZ5F (MZ). DS is supported by the Department of Biochemistry and Biotechnological Medicine, Università Federico II, Naples, Italy, and CEINGE, Centro di Ingegneria Genetica e Biotecnologie Avanzate, Naples, Italy.

Conflict of interest

The authors declare that they have no competing interests as defined by Clinical & Experimental Metastasis, or other interests that might be perceived as influencing the results and discussion reported in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Zollo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spano, D., Zollo, M. Tumor microenvironment: a main actor in the metastasis process. Clin Exp Metastasis 29, 381–395 (2012). https://doi.org/10.1007/s10585-012-9457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9457-5

Keywords

Navigation