Skip to main content
Log in

Multilocus heterozygosity and inbreeding in the Siberian jay

  • Technical Note
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Because of its common negative association with fitness, inbreeding is a major concern in conservation biology. Traditionally it has been measured as individual inbreeding coefficient calculated from the pedigree, but recently multilocus heterozygosity estimates have become commonly used as proxies. However, theoretical and simulation studies have cast doubt on the validity of these surrogates especially when they are based on only a few molecular markers. Yet, empirical studies reporting the correlation between multilocus heterozygosity and inbreeding coefficient are rare. We studied this relationship in a wild Siberian jay (Perisoreus infaustus) population subject to a long-term field study over 30 years. The correlations between inbreeding coefficient and the employed heterozygosity measures—standardized heterozygosity and internal relatedness—based on 21 microsatellite loci were weak. These results together with results from theoretical and simulation studies caution against use of multilocus heterozygosity estimates to study inbreeding in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Acevedo-Whitehouse K, Gulland F, Greig D et al (2003) Disease susceptibility in California sea lions. Nature 422:435

    Article  Google Scholar 

  • Amos W, Worthington Wilmer J, Fullard K et al (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027

    Article  CAS  Google Scholar 

  • Aparicio JM, Ortego J, Cordero PJ (2007) Can a simple algebraic analysis predict markers–genome heterozygosity correlations? J Hered 98:93–96

    Article  PubMed  CAS  Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Andrén H, Hansson B et al (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72. doi:10.1371/journal.pone.0000072

    Article  PubMed  Google Scholar 

  • Chakraborty R (1981) The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98:461–466

    PubMed  Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA et al (1999) Parasite-mediated selection against inbred Soay sheep in a free-living island population. Evolution 53:1259–1267

    Article  Google Scholar 

  • Curik I, Zechner P, Sölkner J et al (2003) Inbreeding, microsatellite heterozygosity, and morphological traits in Lipizzan horses. J Hered 94:125–132

    Article  PubMed  CAS  Google Scholar 

  • DeWoody YD, DeWoody JA (2005) On the estimation of genome-wide heterozygosity using molecular markers. J Hered 96:85–88

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Pearson Prentice Hall, Harlow, Essex

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Article  Google Scholar 

  • Grant PR, Grant BR, Petren K (2001) A population founded by a single pair of individuals: establishment, expansion and evolution. Genetica 112–113:359–382

    Article  PubMed  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hedrick P, Fredrickson R, Ellegren H (2001) Evaluation of d2, a microsatellite measure of inbreeding and outbreeding, in wolves with a known pedigree. Evolution 55:1256–1260

    PubMed  CAS  Google Scholar 

  • Hunter M, Gibbs JP (2006) Fundamentals of conservation biology, 3rd edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Jaari S, Välimäki K, Merilä J (in press) Isolation and characterization of 100 polymorphic microsatellite loci for the Siberian jay (Perisoreus infaustus). Mol Ecol Res

  • Jensen H, Bremset EM, Ringsby TH et al (2007) Multilocus heterozygosity and inbreeding depression in an insular house sparrow metapopulation. Mol Ecol 16:4066–4078

    Article  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1006

    Article  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kim SH, Cheng KM, Ritland C et al (2007) Inbreeding in Japanese quail estimated by pedigree and microsatellite analyses. J Hered 98:378–381

    Article  PubMed  CAS  Google Scholar 

  • Lillandt B-G, Bensch S, von Schantz T (2001) Parentage determination in kin-structured populations: microsatellite analyses in the Siberian jay Perisoreus infaustus during a 25-year population study. Avian Sci 1:3–14

    Google Scholar 

  • Lillandt B-G, Bensch S, Hansson B et al (2002) Isolation and cross-species amplification of microsatellite loci in the Siberian jay (Perisoreus infaustus). Hereditas 137:157–160

    Article  PubMed  Google Scholar 

  • Lillandt B-G, Bensch S, von Schantz T (2003) Family structure in the Siberian jay as revealed by microsatellite analyses. Condor 105:505–514

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Markert JA, Grant PR, Grant BR et al (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315

    Article  PubMed  CAS  Google Scholar 

  • Mitton JB, Pierce BA (1980) The distribution of individual heterozygosity in natural populations. Genetics 95:1043–1054

    PubMed  Google Scholar 

  • Overall ADJ, Byrne KA, Pilkington JG et al (2005) Heterozygosity, inbreeding and neonatal traits in Soay sheep on St Kilda. Mol Ecol 14:3383–3393

    Article  PubMed  CAS  Google Scholar 

  • Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615

    Article  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Roff DA (2002) Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution 56:768–775

    PubMed  Google Scholar 

  • Slate J, Kruuk LEB, Marshall TC et al (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662

    Article  CAS  Google Scholar 

  • Slate J, David P, Dodds KG et al (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Svensson L (1992) Identification guide to European passerines. Naturhistoriska Riksmuseet, Stockholm

    Google Scholar 

  • Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their constructive comments on the manuscript. We are grateful to all the people who during the course of the study have helped with the field work and laboratory analyses. Our research was supported by Research Foundation of the University of Helsinki (JA & JM), Emil Aaltonen Foundation (JA), Finnish Ministry of Education (JA), R.E. Serlachius stiftelse (B-GL), Maj and Tor Nessling Foundation (B-GL & JM) and Academy of Finland (SJ & JM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi S. Alho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alho, J.S., Lillandt, BG., Jaari, S. et al. Multilocus heterozygosity and inbreeding in the Siberian jay. Conserv Genet 10, 605–609 (2009). https://doi.org/10.1007/s10592-008-9588-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9588-z

Keywords

Navigation