Skip to main content

Advertisement

Log in

Unexpectedly high genetic diversity of mtDNA control region through severe bottleneck in vulnerable albatross Phoebastria albatrus

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

In the late part of the nineteenth century and the early part of the last century, the short-tailed albatross Phoebastria albatrus was in danger of extinction owing to feather hunting. In the middle of the last century, the total number of this species was inferred to be approximately 50–60 with breeding occurring only on Torishima Island of the Izu Islands. Recently, the number of individuals has increased to more than 2,000 and that of their breeding islands to three, namely, Torishima Island, and Minami- and Kita-kojima Islands of the Senkaku Islands. Here, we show that the 44 short-tailed albatrosses we examined represent 29 haplotypes in the control region of mitochondrial DNA, and have a considerably higher genetic diversity than most avian species, but not very high in albatross species; the h and π were 0.96 and 0.013, respectively. However, the parsimony network clearly showed that many intermediate haplotypes were lost. It was concluded that the majority of the haplotypes in the founder population have been maintained. Judging from these findings and the exponential increase in the number of individuals, the present population of the short-tailed albatross seems not to be affected by inbreeding depression through a severe bottleneck. The conservation and expansion of their breeding grounds, and effective protection from bycatch mortality in foraging areas are important for the future survival of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott CL, Double MC (2003) Phylogeography of shy and white-capped albatrosses inferred from mitochondrial DNA sequences: implications for population history and taxonomy. Mol Ecol 12:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Abbott CL, Double MC, Trueman JWH, Robinson A, Cockburn A (2005) An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Mol Ecol 14:3605–3613

    Article  CAS  PubMed  Google Scholar 

  • Adams MS, Villablanca FX (2007) Consequences of a genetic bottleneck in California condors: a mitochondrial DNA perspective. In: Mee A, Hall LS (eds) California condors in the 21st century. Nuttall Ornithological Club and American Ornithologist’s Union, Cambridge, pp 35–55

    Google Scholar 

  • Arndt A, Smith MJ (1998) Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria. Mol Biol Evol 15:1009–1016

    CAS  PubMed  Google Scholar 

  • Baba Y, Fujimaki Y, Koike H (1999) Genetic diversity and gene flow of the Hazel Grouse Bonasa bonasia in Japan. Jpn J Ornithol 48:47–60 (in Japanese with English abstract)

    Article  Google Scholar 

  • Bello N, Francino O, Sánchez A (2001) Isolation of genomic DNA from feathers. J Vet Diagn Invest 13:162–164

    CAS  PubMed  Google Scholar 

  • Black WC IV, Roehrdanz RL (1998) Mitochondrial gene order is not conserved in Arthropods: prostriate and metastriate tick mitochondrial genomes. Mol Biol Evol 15:1772–1785

    CAS  PubMed  Google Scholar 

  • Burg TM, Croxall JP (2001) Global relationships amongst black-browed and grey-headed albatrosses: analysis of population structure using mitochondrial DNA and microsatellites. Mol Ecol 10:2647–2660

    Article  CAS  PubMed  Google Scholar 

  • Burg TM, Croxall JP (2004) Global population structure and taxonomy of the wandering albatross species complex. Mol Ecol 13:2345–2355

    Article  CAS  PubMed  Google Scholar 

  • Campbell NJH, Barker SC (1999) The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Mol Biol Evol 16:732–740

    CAS  PubMed  Google Scholar 

  • Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18:1330–1342

    CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2006) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24:269–280

    Article  PubMed  Google Scholar 

  • Glenn TC, Stephan W, Braun MJ (1999) Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conserv Biol 13:1097–1107

    Article  Google Scholar 

  • Hasegawa H (1978) Recent observations of the short-tailed albatross Diomedea albatrus on Torishima. J Yamashina Inst Ornithol 10:58–69

    Google Scholar 

  • Hasegawa H (1980) Observations on the status of the short-tailed albatross Diomedea albatrus on Torishima in 1977/78 and 1978/79. J Yamashina Inst Ornithol 12:59–67

    Google Scholar 

  • Hasegawa H (1982) The breeding status of the short-tailed albatross Diomedea albatrus, on Torishima, 1979/80–1980/81. J Yamashina Inst Ornithol 14:16–24

    Google Scholar 

  • Hasegawa H (1984) Status and conservation of seabirds in Japan, with special attention to the short-tailed albatross. In: Croxall JP, Evans PGH, Schreiber RW (eds) Status and conservation of the world’s seabirds. International Council for Bird Preservation, Cambridge, pp 487–500

    Google Scholar 

  • Hasegawa H (2003) From fifty to five thousands: for the restoration of the short-tailed albatross. Doubutsu-sha, Tokyo (in Japanese)

    Google Scholar 

  • Hasegawa H, DeGange AR (1982) The short-tailed albatross, Diomedea albatrus, its status, distribution and natural history: with reference to the breeding biology of other northern hemisphere albatrosses. Am Birds 36:806–814

    Google Scholar 

  • Hasegawa O, Takada S, Yoshida MC, Abe S (1999) Variation of mitochondrial control region sequences in three crane species, the red-crowned crane Grus japonensis, the common crane G. grus and the hooded crane G. monacha. Zool Sci 16:685–692

    Article  CAS  Google Scholar 

  • IUCN (International Union for Conservation of Nature and Natural Resources) (2008) 2008 IUCN Red List of Threatened Species. http://www.iucnredlist.org. Cited 21 Apr 2009

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kocher TD, White TJ (1989) Evolutionary analysis via PCR. In: Erlich HA (ed) PCR technology: principles and applications for DNA amplification. Stockton Press, New York, pp 137–147

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T (1996) Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 13:1242–1254

    CAS  PubMed  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T (1998) The complete nucleotide sequence of a snake (Dinodon semicarinatus) mitochondrial genome with two identical control regions. Genetics 150:313–329

    CAS  PubMed  Google Scholar 

  • Kuro-o M, Hikida T, Kohno S (1992) Molecular genetic analysis of phylogenetic relationships in the genus Hynobius by means of Southern blot hybridization. Genome 35:478–491. Erratum in: Genome 35:896–898 (1992)

    Google Scholar 

  • Lawrence HA, Taylor GA, Millar CD, Lambert DM (2008) High mitochondrial and nuclear genetic diversity in one of the world’s most endangered seabirds, the Chatham Island taiko (Pterodroma magentae). Conserv Genet 9:1293–1301

    Article  Google Scholar 

  • Lee J-S, Miya M, Lee Y-S, Kim CG, Park E-H, Aoki Y, Nishida M (2001) The complete DNA sequence of the mitochondrial genome of the self-fertilizing fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the first description of duplication of a control region in fish. Gene 280:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lucchini V, Randi E (1998) Mitochondrial DNA sequence variation and phylogeographical structure of rock partridge (Alectoris graeca) populations. Heredity 81:528–536

    Article  CAS  PubMed  Google Scholar 

  • Marshall HD, Baker AJ (1997) Structural conservation and variation in the mitochondrial control region of Fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Mol Biol Evol 14:173–184

    CAS  PubMed  Google Scholar 

  • Martínez-Cruz B, Godoy JA, Negro JJ (2004) Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti). Mol Ecol 13:2243–2255

    Article  PubMed  Google Scholar 

  • McDermond K, Morgan KH (1993) Status and conservation of North Pacific albatrosses. In: Vermeer K, Briggs KT, Morgan KH, Siegel-Causey D (eds) The status, ecology, and conservation of marine birds of the North Pacific. Environment Canada, Ottawa, pp 70–81

    Google Scholar 

  • Mindell DP, Sorenson MD, Dimcheff DE (1998) Multiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci USA 95:10693–10697

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nunn GB, Cooper J, Jouventin P, Robertson CJR, Robertson GG (1996) Evolutionary relationships among extant albatrosses (Procellariiformes: Diomedeidae) established from complete cytochrome-b gene sequences. Auk 113:784–801

    Google Scholar 

  • Ogoh K, Ohmiya Y (2004) Complete mitochondrial DNA sequence of the sea-firefly, Vargula hilgendorfii (Crustacea, Ostracoda) with duplicate control regions. Gene 327:131–139

    Article  CAS  PubMed  Google Scholar 

  • Pereira SL, Grau ET, Wajntal A (2004) Molecular architecture and rates of DNA substitutions of the mitochondrial control region of cracid birds. Genome 47:535–545

    Article  CAS  PubMed  Google Scholar 

  • Primack RB (2006) Essentials of conservation biology, 4th edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Randi E, Lucchini V (1998) Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. J Mol Evol 47:449–462

    Article  CAS  PubMed  Google Scholar 

  • Ruokonen M, Aarvak T, Madsen J (2005) Colonization history of the high-arctic pink-footed goose Anser brachyrhynchus. Mol Ecol 14:171–178

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sano N, Kurabayashi A, Fujii T, Yonekawa H, Sumida M (2005) Complete nucleotide sequence of the mitochondrial genome of Schlegel’s tree frog Rhacophorus schlegelii (family Rhacophoridae): duplicated control regions and gene rearrangements. Genes Genet Syst 80:213–224

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Barker SC (2003) The highly rearranged mitochondrial genome of the plague thrips, Thrips imagines (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Mol Biol Evol 20:362–370

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Barker SC, Mitani H, Aoki Y, Fukunaga M (2005) Evolution of duplicate control regions in the mitochondrial genomes of Metazoa: a case study with Australasian Ixodes ticks. Mol Biol Evol 22:620–629

    Article  CAS  PubMed  Google Scholar 

  • Smith AL, Monteiro L, Hasegawa O, Friesen VL (2007) Global phylogeography of the band-rumped storm-petrel (Oceanodroma castro; Procellariiformes: Hydrobatidae). Mol Phylogenet Evol 43:755–773

    Article  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Tarr CL, Fleischer RC (1999) Population boundaries and genetic diversity in the endangered Mariana crow (Corvus kubaryi). Mol Ecol 8:941–949

    Article  CAS  PubMed  Google Scholar 

  • Tickell WLN (2000) Albatrosses. Pica Press, Sussex

    Google Scholar 

  • Tone M, Nakano N, Takao E, Narisawa S, Mizuno S (1982) Demonstration of W chromosome-specific repetitive DNA sequences in the domestic fowl, Gallus g. domesticus. Chromosoma 86:551–569

    Article  CAS  PubMed  Google Scholar 

  • Walsh HE, Edwards SV (2005) Conservation genetics and Pacific fisheries bycatch: mitochondrial differentiation and population assignment in black-footed albatrosses (Phoebastria nigripes). Conserv Genet 6:289–295

    Article  Google Scholar 

  • Wenink PW, Baker AJ, Tilanus MGJ (1993) Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proc Natl Acad Sci USA 90:94–98

    Article  CAS  PubMed  Google Scholar 

  • Wenink PW, Baker AJ, Tilanus MGJ (1994) Mitochondrial control-region sequences in two shorebird species, the turnstone and the dunlin, and their utility in population genetic studies. Mol Biol Evol 11:22–31

    CAS  PubMed  Google Scholar 

  • Wisely SM, Buskirk SW, Fleming MA, McDonald DB, Ostrander EA (2002) Genetic diversity and fitness in black-footed ferrets before and during a bottleneck. J Hered 93:231–237

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Murata K, Matsuda H, Hosoda T, Tamura K, Furuyama J (2000) Determination of the complete nucleotide sequence and haplotypes in the D-loop region of the mitochondrial genome in the Oriental white stork, Ciconia boyciana. Genes Genet Syst 75:25–32

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank C. Matsuba of Toho University, and A. Okumoto, S. Tozawa, M. Satoh, K. Adachi, Y. Matsue, K. Okumoto, S. Kawaguchi, N. Horikawa, and T. Yoshitama of Hirosaki University for technical assistance. The authors are also grateful to Dr. Y. Kikkawa of the Tokyo Metropolitan Institute of Medical Science, Dr. N. Takahata of the Graduate University for Advanced Studies, and Drs. H. Tachida and Y. Baba of Kyushu University for helpful advice. The authors thank also anonymous reviewers for expert criticism and valuable suggestions. This work was carried out in part at the Gene Research Center of Hirosaki University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Kuro-o.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuro-o, M., Yonekawa, H., Saito, S. et al. Unexpectedly high genetic diversity of mtDNA control region through severe bottleneck in vulnerable albatross Phoebastria albatrus . Conserv Genet 11, 127–137 (2010). https://doi.org/10.1007/s10592-009-0011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0011-1

Keywords

Navigation