Skip to main content
Log in

Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like ΦC31, which recombine attP and attB target sites in a one-way reaction — at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and ΦC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is ‘clean’ in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FRT:

Flp-recombinase target site

HR:

homologous recombination

RMCE:

recombinase-mediated cassette exchange

RT:

recombinase target

SR:

site-specific recombination

References

  • Andreas S., Schwenk F., Küter-Luks B., Faust N. and Kühn R. (2002). Enhanced efficiency through nuclear localization signal fusion on phage C31-integrase: activity comparison with Cre and FLPe recombinase in mammalian cells. Nucleic Acids Res. 30: 2299–2306

    Article  CAS  Google Scholar 

  • Baer A., Schübeler D. and Bode J. (2000). Transcriptional properties of genomic transgene integration sites marked by electroporation or retroviral infection. Biochemistry 39: 7041–7049

    Article  CAS  Google Scholar 

  • Baer A. and Bode J. (2001). Coping with kinetic and thermodynamic barriers: RMCEan efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotech. 12: 473–480

    Article  CAS  Google Scholar 

  • Baer A. 2002. Funktioneller Vergleich von S/MARs (‘scaffold/matrix attachment regions’ und Insulatoren im chromosomalen Kontext. Dissertation, University of Braunschweig; http://www.biblio.tu-bs.de/ediss/data/20021106a/20021106a.pdf.

  • Bautista D. and Shulman M.J. (1993). A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J. Immunol. 151: 1950–1958

    CAS  Google Scholar 

  • Belteki G., Gertsenstein M., Ow D.W. and Nagy A. (2003). Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat. Biotechnol. 21: 321–324

    Article  CAS  Google Scholar 

  • Bode J., Bartsch J., Boulikas T., Iber M., Mielke C., Schübeler D., Seibler J. and Benham C. 1998. Transcription-promoting genomic sites in mammalia: their elucidation and architectural principles. Gene Ther. Mol. Biol. 1: 551–880.http://www.gtmb.org/volume1/29_Bode.htm.

    Google Scholar 

  • Bode J., Schlake T., Iber M., Schübeler D., Seibler J., Snezhkov E. and Nikolaev L. (2000). The transgeneticist’s toolbox — novel methods for the targeted modification of eukaryotic genomes. Biol. Chem. 381: 801–813

    Article  CAS  Google Scholar 

  • Bode J., Goetze S., Ernst E., Huesemann Y., Baer A., Seibler J. and Mielke C. (2003). Architecture and utilization of highly-expressed genomic sites in New Comprehensive Biochemistry Vol 38. In: Makrides, S. and Bernardi, G. (eds) (volume ed.) Gene Transfer and Expression in Mammalian Cells, pp. Elsevier, Amsterdam

    Google Scholar 

  • Bode J., Winkelmann S., Götze S., Spiker S., Tsutsui K., Bi C. and Benham C. 2005. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J. Mol. Biol. in press.

  • Bouhassira E., Westerman K. and Leboulch P. (1997). Transcriptional behavior of LCR enhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90: 3332–3344

    CAS  Google Scholar 

  • Branda C.S. and Dymecki S.M. (2004). Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Develop. Cell 6: 7–28

    Article  CAS  Google Scholar 

  • Buchholz F., Ringrose L., Angrand P., Rossi F. and Stewart A. (1996). Different thermostabilities of FLP and Cre recombinases: implications for applied site specific recombination. Nucl. Acids Res. 24: 4256–4262

    Article  CAS  Google Scholar 

  • Buchholz F., Angrand P.-O. and Stewart A.F. (1998). Improved properties of Flp recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16: 657–662

    Article  CAS  Google Scholar 

  • Cesari F., Rennekampff V., Vintersten K., Vuong L.G., Seibler J., Bode J., Wiebel F.F. and Nordheim A. (2004). Elk-1 knock-out mice engineered by Flp recombinase-mediated cassette exchange. Genesis 38: 87–92

    Article  CAS  Google Scholar 

  • Cobellis G., Nicolaus G., Iovino M., Romito A., Marra E., Barbarisi M., Sardiello M., Di Giorgio F.P., Iovino N., Zollo M., Ballabio A. and Cortese R. (2005). Tagging genes with cassette-exchange sites. Nucl. Acids Res. 33(4): e44, doi:10.1093/nar/gni045

    Article  Google Scholar 

  • Coroadinha A.S., Schucht R., Gama-Norton L., Wirth D., Hauser H. and Carrondo M.J.T. 2005. The use of recombinase cassette exchange in retroviral vector producer cell lines: predictability and efficiency in transgene replacement. J. Biotechnol., Submitted.

  • Fukushige S. and Sauer B. (1992). Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. 89: 7905–7909

    Article  CAS  Google Scholar 

  • Garrick D., Fiering S., Martin D.I.K. and Whitelaw E. (1998). Repeat-induced gene silencing in mammals. Nat. Genet. 18: 56–59

    Article  CAS  Google Scholar 

  • Goetze S., Huesemann Y., Baer A. and Bode J. (2003). Functional characterization of transgene integration patterns by Halo-FISH: electroporation versus retroviral infection. Biochemistry 42: 7035–7043

    Article  CAS  Google Scholar 

  • Goetze S., Baer A., Winkelmann S., Nehlsen K., Seibler J., Maass K. and Bode J. (2005). Mol. Cell. Biol. 25: 2260–2272

    Article  CAS  Google Scholar 

  • Grabenhorst E., Schlenke P., Pohl S., Nimtz M. and Conradt H.S. (1999). Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconjugate J. 16: 81–97

    Article  CAS  Google Scholar 

  • Groth A.C., Olivares E.C., Thyagarajan B. and Calos M.P. (2000). A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97: 5995–6000

    Article  CAS  Google Scholar 

  • Kolot M., Silberstein N. and Yagil E. (1999). Site specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 26: 207–213

    Article  CAS  Google Scholar 

  • Kouzine K., Liu L., Sanford S., Chung H.J. and Levens D. (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nature Struct. Mol. Biol. 11: 1092–1100

    Article  CAS  Google Scholar 

  • Lauth M., Spreafico F., Dethleffsen K. and Meyer M. (2002). Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucl. Acids Res. 30: e115

    Article  Google Scholar 

  • Mlynarova L., Libantova J., Vrba L. and Nap J.P. (2002). The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA. Gene 296: 129–137

    Article  CAS  Google Scholar 

  • Nakano M., Odaka K., Takahashi Y., Ishimura M., Saito I. and Kanegae Y. (2005). Production of viral vectors using recombinase-mediated cassette exchange. Nucl. Acids Res. 33: e76

    Article  Google Scholar 

  • Ng P. and Baker M.D. (1998). High efficiency site-specific modification of the chromosomal immunoglobulin locus by gene targeting. J. Immunol. Meth. 214: 81–96

    Article  CAS  Google Scholar 

  • O’Gorman S., Fox D.T. and Wahl G.M. (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355

    Article  Google Scholar 

  • Peitz M., Pfannkuche K., Rajewsky K. and Edenhofer F. (2002). Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc. Natl. Acad. Sci. USA 99: 4489–4494

    Article  CAS  Google Scholar 

  • Roebroek A.J.M., Reekmans S., Lauwers A., Feyaerts N., Smeijers L. and Hartmann D. 2006. Mutant Lrp1 knock-in mice generated by RMCE reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol. Cell Biol. 26: 605–616

    Google Scholar 

  • Riu E., Grimm D., Huang Z., Mark A. and Kay M.A. (2005). Increased maintenance and persistence of transgenes by excision of expression cassettes from plasmid sequences in vivo Hum. Gene. Ther. 16: 558–570

    Article  CAS  Google Scholar 

  • Schlake T. and Bode J. (1994). Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33: 12746–12751

    Article  CAS  Google Scholar 

  • Schmidt E.E., Taylor D.S., Prigge J.R., Arnett S. and Capecchi M.R. (2000). Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. USA 97: 13702–13707

    Article  CAS  Google Scholar 

  • Schnütgen F., Doerflinger N., Calléja C., Wendling O., Chambon P. and Ghyselinck N.B. (2003). A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21: 562–565

    Article  Google Scholar 

  • Schucht R., Coroadinha A.S., Zanta-Boussif M.A., Carrondo M., Hauser H. and Wirth D. 2005. A new generation of retroviral producer cells: predictable and stable virus production by Flp mediated site-specific integration of retroviral vectors. Mol. Thera., Submitted.

  • Schübeler D. and Bode J. (1998). Retargeting of retroviral integration sites for the predictable expression of transgenes and the analysis of cis-acting sequences. Biochemistry 37: 11907–11914

    Article  Google Scholar 

  • Seibler J., Schübeler D., Fiering S., Groudine M. and Bode J. (1998). DNA cassette exchange mediated by FLP recombinase: an efficient strategy for the repeated modification of tagged loci by marker-free constructs. Biochemistry 37: 6229–6234

    Article  CAS  Google Scholar 

  • Seibler J., Küter-Luks B., Kern H., Streu S., Plum L., Mauer J., Kühn R., Brüning J.C. and Schwenk F. (2005). Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucl. Acids Res. 33: e67

    Article  Google Scholar 

  • Stark W.M., Boocock M.R. and Sherratt D.J. (1992). Catalysis by site-specific recombinases. Trends Genet. 8: 432–439

    Article  CAS  Google Scholar 

  • Taniguchi M., Sanbo M., Watanabe S., Naruse I., Mishina M. and Yagi T. (1998). Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance genepac: a transient gene-integration marker for ES cells. Nucl. Acids Res. 26: 679–680

    Article  CAS  Google Scholar 

  • Thorpe H.M. and Smith M.C.M. (1998). In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95: 5505–5510

    Article  CAS  Google Scholar 

  • Thyagarajan B., Olivares E.C., Hollis R.P., Ginsburg D.S. and Calos M.P. (2001). Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell Biol. 21: 3926–3934

    Article  CAS  Google Scholar 

  • Umlauf S.W. and Cox M.M. (1988). The functional significance of DNA sequence structure in a site-specific genetic recombination reaction. EMBO J. 7: 1845–1852

    CAS  Google Scholar 

  • Unsinger J., Lindenmaier W., May T., Hauser H. and Wirth D. (2004). Stable and strictly controlled expression of LTR-flanked autoregulated expression cassettes upon adenoviral transfer. Biochem. Biophys. Res. Commun. 319: 879–887

    Article  CAS  Google Scholar 

  • Weidle U.H., Buckel P. and Wienberg J. (1988). Amplified expression constructs for human tissue-type plasminogen activator in Chinese hamster ovary cells: instability in the absence of selective pressure. Gene 66: 193–203

    Article  CAS  Google Scholar 

  • Winkler K., Wermelinger T., Paul C., Koch S., Brecht S., Zietze S., Nuck R., Thiel G., Marx U. and Sandig V. 2005. Targeting the human IgH loci for high level heterologous gene expression. In: Gòdia F. and Fussenegger M.(eds) ESACT Proceedings, Vol. 2. Animal Cell Technology Meets Genomics. SpringerNetherlands, pp.403–409.ISBN: 1-4020-2791-5

  • Wirth M., Bode J., Zettelmeissl G. and Hauser H. (1988). Isolation of overproducing recombinant mammalian cell lines by a fast and simple selection procedure. Gene 73: 419–426

    Article  CAS  Google Scholar 

  • Wirth D. and Hauser H. (2004). Flp-mediated integration of expression cassettes into FRT-tagged chromosomal loci in mammalian cells. Methods Mol. Biol. 267: 467–476

    CAS  Google Scholar 

  • Wong E.T., Kolman J.L., Li Y.C., Mesner L.D., Hillen W., Berens C. and Wahl G.M. (2005). Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucl. Acids Res. 33(17): e147, doi:10.1093/nar/gni145

    Article  Google Scholar 

  • Wurm F.M. and Jordan M. (2003). Gene transfer and gene amplification in mammalian cells in “New Comprehensive Biochemistry 38” In: Bernardi, G. (eds) A Gene Transfer and Expression in Mammalian Cells, Chapter 7. S. Makrides, Volume Ed, pp 307–335. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Bode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oumard, A., Qiao, J., Jostock, T. et al. Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology. Cytotechnology 50, 93–108 (2006). https://doi.org/10.1007/s10616-006-6550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-006-6550-0

Key words

Navigation