Skip to main content

Advertisement

Log in

The mouse pattern electroretinogram

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Mouse models of optic nerve disease such as glaucoma, optic neuritis, ischemic optic neuropathy, and mitochondrial optic neuropathy are being developed at increasing rate to investigate specific pathophysiological mechanisms and the effect of neuroprotective treatments. The use of these models may be greatly enhanced by the availability of non-invasive methods able to monitor retinal ganglion cell (RGC) function longitudinally such as the Pattern Electroretinogram (PERG). While the use of the PERG as a tool to probe inner retina function in mammals is known since 25 years, relatively less information is available for the mouse. Here, the PERG technique and the main applications in the mouse are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568

    Article  PubMed  Google Scholar 

  2. Riggs LA (1986) Electroretinography. Vision Res 26(9):1443–1459

    Article  PubMed  CAS  Google Scholar 

  3. Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955

    Article  Google Scholar 

  4. Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  5. Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, Oxford

    Google Scholar 

  6. Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18

    Article  PubMed  CAS  Google Scholar 

  7. Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168

    Article  PubMed  Google Scholar 

  8. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810

    PubMed  CAS  Google Scholar 

  9. Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302

    Article  PubMed  Google Scholar 

  10. Korth M, Rix R (1987) The pattern ERG in response to colored stimuli. Doc Ophthalmol 65(1):71–77

    Article  PubMed  CAS  Google Scholar 

  11. Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884

    PubMed  CAS  Google Scholar 

  12. Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871

    PubMed  CAS  Google Scholar 

  13. Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189

    Article  PubMed  CAS  Google Scholar 

  14. Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740

    Article  PubMed  Google Scholar 

  15. Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987

    Article  PubMed  CAS  Google Scholar 

  16. Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401

    Article  PubMed  CAS  Google Scholar 

  17. Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967

    PubMed  Google Scholar 

  18. Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951

    PubMed  CAS  Google Scholar 

  19. Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162

    PubMed  CAS  Google Scholar 

  20. Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39

    Article  PubMed  CAS  Google Scholar 

  21. Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751

    Article  Google Scholar 

  22. Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420

    Google Scholar 

  23. Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493

    Article  PubMed  CAS  Google Scholar 

  24. Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425

    Article  PubMed  CAS  Google Scholar 

  25. Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546

    Article  PubMed  CAS  Google Scholar 

  26. Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584

    Article  PubMed  CAS  Google Scholar 

  27. Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959

    Article  PubMed  CAS  Google Scholar 

  28. Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543

    Article  PubMed  CAS  Google Scholar 

  29. Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94

    PubMed  CAS  Google Scholar 

  30. Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120

    PubMed  CAS  Google Scholar 

  31. Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176

    PubMed  Google Scholar 

  32. Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262

    Article  PubMed  CAS  Google Scholar 

  33. Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756

    PubMed  CAS  Google Scholar 

  34. Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24

    Google Scholar 

  35. Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565

    PubMed  CAS  Google Scholar 

  36. Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189

    PubMed  CAS  Google Scholar 

  37. Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731

    Article  PubMed  CAS  Google Scholar 

  38. Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212

    PubMed  CAS  Google Scholar 

  39. Levkovitch-Verbin H (2004) Animal models of optic nerve diseases. Eye 18(11):1066–1074

    Article  PubMed  CAS  Google Scholar 

  40. Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163

    Article  PubMed  Google Scholar 

  41. Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30

    Article  PubMed  CAS  Google Scholar 

  42. Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370

    Article  PubMed  CAS  Google Scholar 

  43. Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31

    Article  PubMed  CAS  Google Scholar 

  44. Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867

    Article  PubMed  Google Scholar 

  45. Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081

    Article  PubMed  CAS  Google Scholar 

  46. Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458

    Article  PubMed  CAS  Google Scholar 

  47. Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726

    Article  PubMed  CAS  Google Scholar 

  48. Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705

  49. Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334

    Article  PubMed  CAS  Google Scholar 

  50. Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95

    PubMed  CAS  Google Scholar 

  51. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576

    PubMed  CAS  Google Scholar 

  52. Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617

    Article  PubMed  CAS  Google Scholar 

  53. Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857

    Article  PubMed  CAS  Google Scholar 

  54. Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574

    Article  PubMed  CAS  Google Scholar 

  55. Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418

    Article  PubMed  CAS  Google Scholar 

  56. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616

    Article  PubMed  Google Scholar 

  57. Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407

    Article  PubMed  Google Scholar 

  58. Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500

  59. Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82

    Article  PubMed  Google Scholar 

  60. Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755

    Article  PubMed  CAS  Google Scholar 

  61. Wong RO (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47

    Article  PubMed  CAS  Google Scholar 

  62. Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187

    Article  PubMed  CAS  Google Scholar 

  63. Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67

    Article  PubMed  CAS  Google Scholar 

  64. Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264

    PubMed  CAS  Google Scholar 

  65. Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313

  66. Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030

    Article  PubMed  CAS  Google Scholar 

  67. Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745

    Article  PubMed  CAS  Google Scholar 

  68. Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10

    Article  PubMed  CAS  Google Scholar 

  69. Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26

    Article  PubMed  CAS  Google Scholar 

  70. John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962

    PubMed  CAS  Google Scholar 

  71. Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648

    PubMed  Google Scholar 

  72. Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210

  73. Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005

  74. Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325

    Article  PubMed  CAS  Google Scholar 

  75. Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362

    Article  PubMed  Google Scholar 

  76. Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211

Download references

Acknowledgement

Financial support: NIH RO3 EY016322, NIH RO1 EY014957, NIH center grant P30-EY14801, unrestricted grant to the University of Miami from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Porciatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porciatti, V. The mouse pattern electroretinogram. Doc Ophthalmol 115, 145–153 (2007). https://doi.org/10.1007/s10633-007-9059-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9059-8

Keywords

Navigation