Skip to main content

Advertisement

Log in

Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the relationship between elevations of intraocular pressure (IOP) and the multifocal electroretinogram (mfERG) in non-human primates. Experimental glaucoma was induced in 4 rhesus and 4 cynomolgus monkeys by laser trabecular meshwork destruction (LTD) in one eye. To evaluate the contribution of ganglion cells to mfERG changes, one monkey of each species had previously underwent unilateral optic nerve transection (ONT). After ≥44 weeks of elevation, the IOP was reduced by trabeculectomy in 2 non-transected animals. In the intact (non-transected) animals, there was an increase in the amplitude of the early mfERG waveforms (N1 and P1) of the first-order kernel (K1) throughout the period of IOP elevation in all of the rhesus, but not all of the cynomolgus monkeys. A species difference was also present as a decrease of the second-order kernel, first slice (K2.1) in all of the cynomolgus monkeys but only in 1 of the rhesus monkeys (the 1 with the ONT). Similar IOP effects on the mfERG were seen in the ONT animals. Surgical lowering of IOP resulted in a return of the elevated K1 amplitudes to baseline levels. However, the depressed K2.1 RMS in the cynomolgus monkeys did not recover. These results demonstrate species-specific changes in cone-driven retinal function during periods of elevated IOP. These IOP-related effects can occur in the absence of retinal ganglion cells and may be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kendell KR, Quigley HA, Kerrigan LA, Pease ME, Quigley EN (1995) Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci 36:200–205

    CAS  PubMed  Google Scholar 

  2. Wygnanski T, Desatnik H, Quigley HA, Glovinsky Y (1995) Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am J Ophthalmol 120:184–189

    CAS  PubMed  Google Scholar 

  3. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan SarksSH, Lemley HL, Millecchia LL (2000) Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol 118:235–245

    CAS  PubMed  Google Scholar 

  4. Choi SS, Zawadzki RJ, Keltner JL, Werner JS (2008) Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. Invest Ophthalmol Vis Sci 49:2103–2119

    Article  PubMed  Google Scholar 

  5. Pelzel HR, Schlamp CL, Poulsen GL, Ver Hoeve JA, Nork TM, Nickells RW (2006) Decrease of cone opsin mRNA in experimental ocular hypertension. Mol Vis 12:1272–1282

    CAS  PubMed  Google Scholar 

  6. Harwerth RS, Smith EL 3rd, DeSantis L (1997) Experimental glaucoma: perimetric field defects and intraocular pressure. J Glaucoma 6:390–401

    Article  CAS  PubMed  Google Scholar 

  7. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML (1999) Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci 40:2242–2250

    CAS  PubMed  Google Scholar 

  8. Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL 3rd, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125

    Article  PubMed  Google Scholar 

  9. Alvis DL (1966) Electroretinographic changes in controlled chronic open-angle glaucoma. Am J Ophthalmol 61:121–131

    CAS  PubMed  Google Scholar 

  10. Fazio DT, Heckenlively JR, Martin DA, Christensen RE (1986) The electroretinogram in advanced open-angle glaucoma. Doc Ophthalmol 63:45–54

    Article  CAS  PubMed  Google Scholar 

  11. Holopigian K, Seiple W, Mayron C, Koty R, Lorenzo M (1990) Electrophysiological and psychophysical flicker sensitivity in patients with primary open-angle glaucoma and ocular hypertension. Investigative Ophthalmology & Visual Science 31:1863–1868

    CAS  Google Scholar 

  12. Odom JV, Feghali JG, Jin JC, Weinstein GW (1990) Visual function deficits in glaucoma. Electroretinogram pattern and luminance nonlinearities. Arch Ophthal 108:222–227

    CAS  PubMed  Google Scholar 

  13. Vaegan GrahamSL, Goldberg I, Buckland L, Hollows FC (1995) Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res 60:697–706

    Article  CAS  PubMed  Google Scholar 

  14. Holopigian K, Greenstein VC, Seiple W, Hood DC, Ritch R (2000) Electrophysiologic assessment of photoreceptor function in patients with primary open-angle glaucoma. J Glaucoma 9:163–168

    CAS  PubMed  Google Scholar 

  15. Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, Smith EL 3rd, Carter-Dawson L, Crawford ML (1996) The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci 37:125–141

    CAS  PubMed  Google Scholar 

  16. Weiner A, Ripkin DJ, Patel S, Kaufman SR, Kohn HD, Weidenthal DT (1998) Foveal dysfunction and central visual field loss in glaucoma. Arch Ophthalmol 116:1169–1174

    CAS  PubMed  Google Scholar 

  17. Eisner A, Samples JR, Campbell HM, Cioffi GA (1995) Foveal adaptation abnormalities in early glaucoma. J Opt Soc Am A Opt Image Sci Vis 12:2318–2328

    Article  CAS  PubMed  Google Scholar 

  18. Eisner A, Samples JR (2000) Flicker sensitivity and cardiovascular function in healthy middle-aged people. Arch Ophthalmol 118:1049–1055

    CAS  PubMed  Google Scholar 

  19. Burton TC (1982) Recovery of visual acuity after retinal detachment involving the macula. Trans Am Ophthalmol Soc 80:475–497

    CAS  PubMed  Google Scholar 

  20. Diederen RM, La Heij EC, Kessels AG, Goezinne F, Liem AT, Hendrikse F (2007) Scleral buckling surgery after macula-off retinal detachment: worse visual outcome after more than 6 days. Ophthalmology 114:705–709

    Article  PubMed  Google Scholar 

  21. Kim CB, Ver Hoeve JN, Kaufman PL, Nork TM (2004) Interspecies and gender differences in multifocal electroretinograms of cynomolgus and rhesus macaques. Doc Ophthalmol 109:73–86

    Article  PubMed  Google Scholar 

  22. Gaasterland D, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13:455–457

    CAS  PubMed  Google Scholar 

  23. Quigley HA, Hohman RM (1983) Laser energy levels for trabecular meshwork damage in the primate eye. Investigative Ophthalmology & Visual Science 24:1305–1307

    CAS  Google Scholar 

  24. Nork TM, Poulsen GL, Nickells RW, Ver Hoeve JN, Cho NC, Levin LA, Lucarelli MJ (2000) Protection of ganglion cells in experimental glaucoma by retinal laser photocoagulation. Arch Ophthalmol 118:1242–1250

    CAS  PubMed  Google Scholar 

  25. Peterson JA, Kiland JA, Croft MA, Kaufman PL (1996) Intraocular pressure measurement in cynomolgus monkeys. Tono-Pen versus manometry. Invest Ophthalmol Vis Sci 37:1197–1199

    CAS  PubMed  Google Scholar 

  26. Heatley G, Kiland J, Faha B, Seeman J, Schlamp CL, Dawson DG, Gleiser J, Maneval D, Kaufman PL, Nickells RW (2004) Gene therapy using p21WAF-1/Cip-1 to modulate wound healing after glaucoma trabeculectomy surgery in a primate model of ocular hypertension. Gene Ther 11:949–955

    Article  CAS  PubMed  Google Scholar 

  27. Gonnering RS, Dortzbach RK, Erickson KA, Kaufman PL (1984) The cynomolgus monkey as a model for orbital research. II. Anatomic effects of lateral orbitotomy. Curr Eye Res 3:541–555

    Article  CAS  PubMed  Google Scholar 

  28. Maertz NA, Kim CB, Nork TM, Levin LA, Lucarelli MJ, Kaufman PL, Ver Hoeve JN (2006) Multifocal visual evoked potentials in the anesthetized non-human primate. Curr Eye Res 31:885–893

    Article  PubMed  Google Scholar 

  29. Chauhan BC, Levatte TL, Garnier KL, Tremblay F, Pang IH, Clark AF, Archibald ML (2006) Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. Invest Ophthalmol Vis Sci 47:634–640

    Article  PubMed  Google Scholar 

  30. Frishman LJ, Saszik S, Harwerth RS, Viswanathan S, Li Y, Smith EL 3rd, Robson JG, Barnes G (2000) Effects of experimental glaucoma in macaques on the multifocal ERG. Multifocal ERG in laser-induced glaucoma. Doc Ophthalmol 100:231–251

    CAS  Google Scholar 

  31. Hare WA, Ton H, Ruiz G, Feldmann B, Wijono M, WoldeMussie E (2001) Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. Invest Ophthalmol Vis Sci 42:127–136

    CAS  PubMed  Google Scholar 

  32. Hood DC, Frishman LJ, Viswanathan S, Robson JG, Ahmed J (1999) Evidence for a ganglion cell contribution to the primate electroretinogram (ERG): effects of TTX on the multifocal ERG in macaque. Vis Neurosci 16:411–416

    Article  CAS  PubMed  Google Scholar 

  33. Hare WA, Ton H (2002) Effects of APB, PDA, and TTX on ERG responses recorded using both multifocal and conventional methods in monkey. Effects of APB, PDA, and TTX on monkey ERG responses. Doc Ophthalmol 105:189–222

    Article  PubMed  Google Scholar 

  34. Heckenlively JR, Tanji T, Logani S (1994) Retrospective study of hyperabnormal (supranormal) electroretinographic responses in 104 patients. Trans Am Ophthalmol Soc 92:217–231; discussion 231-213

    CAS  PubMed  Google Scholar 

  35. Feigl B, Haas A, El-Shabrawi Y (2002) Multifocal ERG in multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 240:615–621

    Article  PubMed  Google Scholar 

  36. Ladewig MS, Ladewig K, Guner M, Heidrich H (2005) Prostaglandin E1 infusion therapy in dry age-related macular degeneration. Prostaglandins Leukot Essent Fatty Acids 72:251–256

    Article  CAS  PubMed  Google Scholar 

  37. Adachi-Usami E, Mizota A, Ikeda H, Hanawa T, Kimura T (1992) Transient increase of b-wave in the mouse retina after sodium iodate injection. Invest Ophthalmol Vis Sci 33:3109–3113

    CAS  PubMed  Google Scholar 

  38. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685

    PubMed  Google Scholar 

  39. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Investigative Ophthalmology & Visual Science 36:774–786

    CAS  Google Scholar 

  40. Raz D, Seeliger MW, Geva AB, Percicot CL, Lambrou GN, Ofri R (2002) The effect of contrast and luminance on mfERG responses in a monkey model of glaucoma. Invest Ophthalmol Vis Sci 43:2027–2035

    PubMed  Google Scholar 

  41. Hare WA, WoldeMussie E, Lai RK, Ton H, Ruiz G, Chun T, Wheeler L (2004) Efficacy and safety of memantine treatment for reduction of changes associated with experimental glaucoma in monkey, I: functional measures. Invest Ophthalmol Vis Sci 45:2625–2639

    Article  PubMed  Google Scholar 

  42. Irifune M, Shimizu T, Nomoto M, Fukuda T (1992) Ketamine-induced anesthesia involves the N-methyl-D-aspartate receptor-channel complex in mice. Brain Res 596:1–9

    Article  CAS  PubMed  Google Scholar 

  43. Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213

    CAS  PubMed  Google Scholar 

  44. Tomlin SL, Jenkins A, Lieb WR, Franks NP (1999) Preparation of barbiturate optical isomers and their effects on GABA(A) receptors. Anesthesiology 90:1714–1722

    Article  CAS  PubMed  Google Scholar 

  45. Fortune B, Cull G, Wang L, Van Buskirk EM, Cioffi GA (2002) Factors affecting the use of multifocal electroretinography to monitor function in a primate model of glaucoma. Doc Ophthalmol 105:151–178

    Article  PubMed  Google Scholar 

  46. Vardi N, Duvoisin R, Wu G, Sterling P (2000) Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J Comp Neurol 423:402–412

    Article  CAS  PubMed  Google Scholar 

  47. Mosinger JL, Yazulla S, Studholme KM (1986) GABA-like immunoreactivity in the vertebrate retina: a species comparison. Exp Eye Res 42:631–644

    Article  CAS  PubMed  Google Scholar 

  48. Koulen P, SassoePognetto M, Grunert U, Wassle H (1996) Selective clustering of GABA(A) and glycine receptors in the mammalian retina. J Neurosci 16:2127–2140

    CAS  PubMed  Google Scholar 

  49. Yazulla S, Studholme KM, Vitorica J, de Blas AL (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. J Comp Neurol 280:15–26

    Article  CAS  PubMed  Google Scholar 

  50. Vardi N, Sterling P (1994) Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Res 34:1235–1246

    Article  CAS  PubMed  Google Scholar 

  51. Chao TI, Grosche J, Friedrich KJ, Biedermann B, Francke M, Pannicke T, Reichelt W, Wulst M, Muhle C, Pritz-Hohmeier S, Kuhrt H, Faude F, Drommer W, Kasper M, Buse E, Reichenbach A (1997) Comparative studies on mammalian Muller (retinal glial) cells. J Neurocytol 26:439–454

    Article  CAS  PubMed  Google Scholar 

  52. Pannicke T, Biedermann B, Uckermann O, Weick M, Bringmann A, Wolf S, Wiedemann P, Habermann G, Buse E, Reichenbach A (2005) Physiological properties of retinal Muller glial cells from the cynomolgus monkey, Macaca fascicularis–a comparison to human Muller cells. Vision Res 45:1781–1791

    Article  CAS  PubMed  Google Scholar 

  53. Luo X, Heidinger V, Picaud S, Lambrou G, Dreyfus H, Sahel J, Hicks D (2001) Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Invest Ophthalmol Vis Sci 42:1096–1106

    CAS  PubMed  Google Scholar 

  54. Kremers J, Doelemeyer A, Polska EA, Moret F, Lambert C, Lambrou GN (2008) Multifocal electroretinographical changes in monkeys with experimental ocular hypertension: a longitudinal study. Doc Ophthalmol 117:47–63

    Article  PubMed  Google Scholar 

  55. Raz D, Perlman I, Percicot CL, Lambrou GN, Ofri R (2003) Functional damage to inner and outer retinal cells in experimental glaucoma. Invest Ophthalmol Vis Sci 44:3675–3684

    Article  PubMed  Google Scholar 

  56. Kim CBY, VerHoeve JN, Kaufman PL, Nork TM (2005) Effects of reference electrode location on monopolar-derived multifocal electroretinograms in cynomolgus monkeys. Doc Ophthalmol 111:113–125

    Article  PubMed  Google Scholar 

  57. Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373

    Article  CAS  PubMed  Google Scholar 

  58. Ogden TE (1973) The oscillatory waves of the primate electroretinogram. Vision Res 13:1059–1074

    Article  CAS  PubMed  Google Scholar 

  59. Wu S, Sutter EE (1995) A topographic study of oscillatory potentials in man. Vis Neurosci 12:1013–1025

    Article  CAS  PubMed  Google Scholar 

  60. Fortune B, Cull GA, Burgoyne CF (2008) Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci 49:4444–4452

    Article  PubMed  Google Scholar 

  61. Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47:753–767

    Article  PubMed  Google Scholar 

  62. Zhou W, Rangaswamy N, Ktonas P, Frishman LJ (2007) Oscillatory potentials of the slow-sequence multifocal ERG in primates extracted using the Matching Pursuit method. Vision Res 47:2021–2036

    Article  PubMed  Google Scholar 

  63. Mohidin N, Yap MK, Jacobs RJ (1997) The repeatability and variability of the multifocal electroretinogram for four different electrodes. Ophthalmic Physiol Opt 17:530–535

    Article  CAS  PubMed  Google Scholar 

  64. Lei Y, Garrahan N, Hermann B, Becker DL, Hernandez MR, Boulton ME, Morgan JE (2008) Quantification of retinal transneuronal degeneration in human glaucoma: a novel multiphoton-DAPI approach. Invest Ophthalmol Vis Sci 49:1940–1945

    Article  PubMed  Google Scholar 

  65. Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464

    CAS  PubMed  Google Scholar 

  66. Henson DB, Artes PH, Chauhan BC (1999) Diffuse loss of sensitivity in early glaucoma. Invest Ophthalmol Vis Sci 40:3147–3151

    CAS  PubMed  Google Scholar 

  67. Kook MS, Lee SU, Sung KR, Tchah H, Kim ST, Kim KR, Kang W (2002) Pattern of retinal nerve fiber layer damage in Korean eyes with normal-tension glaucoma and hemifield visual field defect. Graefes Arch Clin Exp Ophthalmol 240:448–456

    Article  PubMed  Google Scholar 

  68. Mok KH, Lee VW, So KF (2004) Retinal nerve fiber loss in high- and normal-tension glaucoma by optical coherence tomography. Optom Vis Sci 81:369–372

    Article  PubMed  Google Scholar 

  69. Bagga H, Greenfield DS (2004) Quantitative assessment of structural damage in eyes with localized visual field abnormalities. Am J Ophthalmol 137:797–805

    Article  PubMed  Google Scholar 

  70. Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Investigative Ophthalmology & Visual Science 32:484–491

    CAS  Google Scholar 

  71. Desatnik H, Quigley HA, Glovinsky Y (1996) Study of central retinal ganglion cell loss in experimental glaucoma in monkey eyes. J Glaucoma 5:46–53

    Article  CAS  PubMed  Google Scholar 

  72. Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML (2004) Neural losses correlated with visual losses in clinical perimetry. Invest Ophthalmol Vis Sci 45:3152–3160

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carrie Bunger, Beth Hennes, and Cassandra Miller for providing technical assistance. Support: R01 EY014041 (Dr Nork), National Institutes of Health (NIH); R01-EY02698 (Dr. Kaufman), NIH; P30 EY016665 (Drs. Nork and Kaufman), NIH; the American Health Assistance Foundation; the Retina Research Foundation, Walter H. Helmerich Chair (Dr Nork); and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Michael Nork.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michael Nork, T., Kim, C.B.Y., Heatley, G.A. et al. Serial multifocal electroretinograms during long-term elevation and reduction of intraocular pressure in non-human primates. Doc Ophthalmol 120, 273–289 (2010). https://doi.org/10.1007/s10633-010-9231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-010-9231-4

Keywords

Navigation