Skip to main content

Advertisement

Log in

Evolution of the predictive markers amphiregulin and epiregulin mRNAs during long-term cetuximab treatment of KRAS wild-type tumor cells

  • SHORT REPORT
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Molecular mechanisms other than activating KRAS mutations should underlie the occurrence of weaker versus stronger responses to cetuximab (CTX) in EGFR-dependent carcinomas with either an intact KRAS signaling or in which KRAS mutations do not predict CTX efficacy. We hypothesized that KRAS wild-type (WT) tumor cell-line models chronically adapted to grow in the presence of CTX could be interrogated to establish if the positive predictive value of the mRNAs coding for the EGFR ligands amphiregulin (AR) and epiregulin (EPI) could be significantly altered during and/or after treatment with CTX. Gene expression analyses using real-time (kinetic) RT-PCR were performed to monitor the transcriptional evolution of EGFR ligands EGF, TGFα, AR, BTC, EPI, NRG and HB-EGF in experimental modes induced to exhibit acquired resistance to the mono-HER1 inhibitor CTX, the mono-HER2 inhibitor trastuzumab (Tzb) or the dual HER1/HER2 inhibitor lapatinib (LPT). Gene expression signatures for EGFR ligands distinctively related to the occurrence of unresponsiveness to CTX, Tzb or LPT, with minimal overlap between them. CTX’s molecular functioning largely depended on the overproduction of the mRNAs coding for the EGFR ligands AR and EPI. Thus, a dramatic down-regulation of AR/EPI mRNA expression occurred upon loss of CTX efficacy in EGFR-positive tumor cells with an intact regulation of RAS signaling. Unlike KRAS mutations, which are informative of unresponsiveness to CTX solely in mCRC, our hypothesis-generating data suggest that expression status of AR and EPI mRNAs might be evaluated as dynamic predictors of response in KRAS WT patients receiving any CTX-based therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  PubMed  CAS  Google Scholar 

  2. Siena S, Sartore-Bianchi A, Di Nicolantonio F et al (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101:1308–1324

    Article  PubMed  CAS  Google Scholar 

  3. Linardou H, Dahabreh IJ, Kanaloupiti D et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9:962–972

    Article  PubMed  CAS  Google Scholar 

  4. De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762

    Article  PubMed  Google Scholar 

  5. Siena S, Sartore-Bianchi A, Di Nicolantonio F et al (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101:1308–1324

    Article  PubMed  CAS  Google Scholar 

  6. Bardelli A, Siena S (2010) Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol 28:1254–1261

    Article  PubMed  CAS  Google Scholar 

  7. Italiano A, Hostein I, Soubeyran I et al (2010) KRAS and BRAF mutational status in primary colorectal tumors and related metastatic sites: biological and clinical implications. Ann Surg Oncol 17:1429–1434

    Article  PubMed  Google Scholar 

  8. Santini D, Spoto C, Loupakis F et al (2010) High concordance of BRAF status between primary colorectal tumours and related metastatic sites: implications for clinical practice. Ann Oncol 21:1565

    Article  PubMed  CAS  Google Scholar 

  9. Mehra R, Cohen RB, Burtness BA (2008) The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol 6:742–750

    PubMed  Google Scholar 

  10. Ettinger DS (2010) Emerging profile of cetuximab in non-small cell lung cancer. Lung Cancer 68:332–337

    Article  PubMed  Google Scholar 

  11. Vincenzi B, Zoccoli A, Pantano F, Venditti O, Galluzzo S (2010) Cetuximab: from bench to bedside. Curr Cancer Drug Targets 10:80–95

    Article  PubMed  CAS  Google Scholar 

  12. Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25:3230–3237

    Article  PubMed  CAS  Google Scholar 

  13. Jacobs B, De Roock W, Piessevaux H et al (2009) Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 27:5068–5074

    Article  PubMed  CAS  Google Scholar 

  14. Yonesaka K, Zejnullahu K, Lindeman N et al (2008) Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clin Cancer Res 14:6963–6973

    Article  PubMed  CAS  Google Scholar 

  15. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS ONE 4:e6251

    Article  PubMed  Google Scholar 

  16. Vazquez-Martin A, Oliveras-Ferraros C, Colomer R et al (2008) Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Ann Oncol 19:1097–1109

    Article  PubMed  CAS  Google Scholar 

  17. Ferrer-Soler L, Vazquez-Martin A, Brunet J et al (2007) An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: Gefitinib (Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands (Review). Int J Mol Med 20:3–10

    PubMed  CAS  Google Scholar 

  18. Menendez JA, Lupu R (2007) Transphosphorylation of kinase-dead HER3 and breast cancer progression: a new standpoint or an old concept revisited? Breast Cancer Res 9:111

    Article  PubMed  Google Scholar 

  19. Ritter CA, Perez-Torres M, Rinehart C et al (2007) Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res 13:4909–4919

    Article  PubMed  CAS  Google Scholar 

  20. Wheeler DL, Dunn EF, Harari PM (2010) Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 7:493–507

    Article  PubMed  CAS  Google Scholar 

  21. Rajput A, Koterba AP, Kreisberg JI et al (2007) A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Res 67:665–673

    Article  PubMed  CAS  Google Scholar 

  22. Wheeler DL, Huang S, Kruser TJ et al (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27:3944–3956

    Article  PubMed  CAS  Google Scholar 

  23. Wheeler DL, Iida M, Kruser TJ et al (2009) Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther 8:696–703

    Article  PubMed  CAS  Google Scholar 

  24. Lu Y, Li X, Liang K et al (2007) Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res 67:8240–8247

    Article  PubMed  CAS  Google Scholar 

  25. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28:3801–3813

    Article  PubMed  CAS  Google Scholar 

  26. Nevo J, Mattila E, Pellinen T et al (2009) Mammary-derived growth inhibitor alters traffic of EGFR and induces a novel form of cetuximab resistance. Clin Cancer Res 15:6570–6581

    Article  PubMed  CAS  Google Scholar 

  27. Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61:5090–5101

    PubMed  CAS  Google Scholar 

  28. Ciardiello F, Bianco R, Caputo R et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to antiepidermal growth factor receptor therapy. Clin Cancer Res 10:784–793

    Article  PubMed  CAS  Google Scholar 

  29. Bianco R, Rosa R, Damiano V et al (2008) Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res 14:5069–5080

    Article  PubMed  CAS  Google Scholar 

  30. Fuchs BC, Fujii T, Dorfman JD et al (2008) Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res 68:2391–2399

    Article  PubMed  CAS  Google Scholar 

  31. Rosell R, Morán T, Carcereny E et al (2010) Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain. Clin Transl Oncol 12:75–80

    Article  PubMed  CAS  Google Scholar 

  32. Sánchez-Muñoz A, Gallego E, de Luque V et al (2010) Lack of evidence for KRAS oncogenic mutations in triple-negative breast cancer. BMC Cancer 10:136

    Article  PubMed  Google Scholar 

  33. Weber A, Langhanki L, Sommerer F et al (2003) Mutations of the BRAF gene in squamous cell carcinoma of the head and neck. Oncogene 22:4757–4759

    Article  PubMed  CAS  Google Scholar 

  34. Schuster R, Max N, Mann B et al (2004) Quantitative real-time RT-PCR for detection of disseminated tumor cells in peripheral blood of patients with colorectal cancer using different mRNA markers. Int J Cancer 108:219–227

    Article  PubMed  CAS  Google Scholar 

  35. Jacob K, Sollier C, Jabado N (2007) Circulating tumor cells: detection, molecular profiling and future prospects. Expert Rev Proteomics 4:741–756

    Article  PubMed  CAS  Google Scholar 

  36. Alunni-Fabbroni M, Sandri MT (2010) Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50:289–297

    Article  PubMed  CAS  Google Scholar 

  37. Gerlinger M, Swanton C (2010) How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer 103:1139–1143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Alejandro Vazquez-Martin is the recipient of a “Sara Borrell” post-doctoral contract (CD08/00283, Ministerio de Sanidad y Consumo, Fondo de Investigación Sanitaria –FIS-, Spain). Work at Menendez’ laboratory is supported in part by the Instituto de Salud Carlos III (Ministerio de Sanidad y Consumo, Fondo de Investigación Sanitaria –FIS-, Spain, Grants CP05-00090 and PI06-0778 and RD06-0020-0028), the Fundación Científica de la Asociación Española Contra el Cáncer (AECC, Spain), and by the Ministerio de Ciencia e Innovación (SAF2009-11579, Plan Nacional de I+D+ I, MICINN, Spain).

Conflicts of interest

Cristina Oliveras-Ferraros received a research salary, in part, from a Grant Award by the “Fundación Salud 2000”, which is promoted by Merck Serono (Madrid, Spain). All other authors: None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Menendez.

Additional information

Cristina Oliveras-Ferraros and Anna Massaguer Vall-llovera contributed equally to this research and are listed in random order. Javier A. Menendez and Rafael de Llorens: Co-senior authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveras-Ferraros, C., Vall-llovera, A.M., Salip, D.C. et al. Evolution of the predictive markers amphiregulin and epiregulin mRNAs during long-term cetuximab treatment of KRAS wild-type tumor cells. Invest New Drugs 30, 846–852 (2012). https://doi.org/10.1007/s10637-010-9612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9612-2

Keywords

Navigation