Skip to main content

Advertisement

Log in

Exercise and Children’s Intelligence, Cognition, and Academic Achievement

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Studies that examine the effects of exercise on children’s intelligence, cognition, or academic achievement were reviewed and results were discussed in light of (a) contemporary cognitive theory development directed toward exercise, (b) recent research demonstrating the salutary effects of exercise on adults’ cognitive functioning, and (c) studies conducted with animals that have linked physical activity to changes in neurological development and behavior. Similar to adults, exercise facilitates children’s executive function (i.e., processes required to select, organize, and properly initiate goal-directed actions). Exercise may prove to be a simple, yet important, method of enhancing those aspects of children’s mental functioning central to cognitive development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Unless otherwise noted, Effect Sizes (ES) provided in this section were calculated as recommended by Thalheimer and Cook (2002). Within-group ES was calculated when sufficient data were provided to determine a pre-post intervention test difference score that could be divided by the pooled standard deviation; between-group ES was calculated from available F-test statistics.

References

  • Allegrante, J. P. (2004). Unfit to learn. Education Week, 24(14), 38.

    Google Scholar 

  • Alonso-Alonso, M., & Pascual-Leone, A. (2007). The right brain hypothesis for obesity. Journal of the American Medical Association, 297(16), 1819–1822.

    PubMed  Google Scholar 

  • Amso, D., & Casey, B. J. (2006). Beyond what develops when. Current Directions in Psychological Science, 15(1), 24–29.

    Google Scholar 

  • Baddeley, A. (1986). Working memory. New York: Oxford.

    Google Scholar 

  • Barde, Y. A. (1989). Trophic factors and neuronal survival. Neuron, 2, 1525–1534.

    PubMed  Google Scholar 

  • Barkley, R. (1996). Linkages between attention and executive functions. In G. R. Lyon, & N. A. Krasnegor (Eds.) Attention, memory, and executive function (pp. 307–325). Baltimore, MD: Brooks.

    Google Scholar 

  • Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A., & Greenough, W. T. (1990). Learning causes synaptogenesis, whereas activity causes angiogenesis in cerebellar cortex of adult rats. Proceedings of the National Academy of Science, 87, 5568–5572.

    Google Scholar 

  • Black, J. E., Jones, T. A., Nelson, C. A., & Greenough, W. T. (1998). Neuronal plasticity and the developing brain. In S. Eth (Ed.) Handbook of child and adolescent psychiatry: Basic psychiatric science and treatment (vol. 6, (pp. 31–53)). New York: Wiley.

    Google Scholar 

  • Brisswalter, J. B., Collardeau, M., & Arcelin, R. (2002). Effects of acute physical exercise on cognitive performance. Sports Medicine, 32, 555–566.

    PubMed  Google Scholar 

  • Brody, N. (1992). Intelligence (2nd ed.). San Diego, CA: Academic.

    Google Scholar 

  • Brooks, G. A., Fahey, T. D., & White, T. P. (1996). Exercise physiology (2nd ed.). Mountain View: CA: Mayfield.

    Google Scholar 

  • Brown, B. J. (1967). The effect of an isometric strength program on the intellectual and social development of trainable retarded males. American Corrective Therapy Journal, 31, 44–48.

    Google Scholar 

  • Byrnes, J. P., & Fox, N. A. (1998). The educational relevance of research in cognitive neuroscience. Educational Psychology Review, 10, 297–342.

    Google Scholar 

  • California Department of Education (2005). A study of the relationship between physical fitness and academic achievement in California using 2004 test results. Sacramento, CA: California Department of Education.

    Google Scholar 

  • Campos, A. L. R., Sigulem, D. M., Moraes, D. E. B., Escrivaco, A. M., & Fishberg, M. (1996). Intelligent quotient of obese children and adolescents by the Weschler scale. Revista de Saude Publica, 30, 85–90.

    PubMed  Google Scholar 

  • Casey, B. J., Galvan, A., & Hare, T. A. (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology, 15(2), 239–244.

    PubMed  Google Scholar 

  • Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241–257.

    PubMed  Google Scholar 

  • Castelli, D. M., Hillman, C. H., Buck, S. M., & Erwin, H. E. (2007). Physical fitness and academic achievement in third- and fifth-grade students. Journal of Sport & Exercise Psychology, 29(2), 239–252.

    Google Scholar 

  • Chodzko-Zajko, W. J., & Moore, K. A. (1994). Physical fitness and cognitive functioning in aging. Exercise and Sport Science Reviews, 22, 195–220.

    Google Scholar 

  • Coe, D. P., Pivarnik, J. M., Womack, C. J., Reeves, M. J., & Malina, R. M. (2006). Effect of physical education and activity levels on academic achievement in children. Medicine and Science in Sports and Exercise, 38, 1515–1519.

    PubMed  Google Scholar 

  • Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130.

    PubMed  Google Scholar 

  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., & Cohen, N. J., et al. (2004a). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Science, 101(9), 3316–3321.

    Google Scholar 

  • Colcombe, S. J., Kramer, A. F., McAuley, E., Erickson, K. I., & Scalf, P. (2004b). Neurocognitive ageing and cardiovascular fitness. Journal of Molecular Neuroscience, 24, 9–14.

    PubMed  Google Scholar 

  • Corder, W. O. (1966). Effects of physical education on the intellectual, physical, and social development of educable mentally retarded boys. Exceptional Children, 32, 357–364.

    PubMed  Google Scholar 

  • Cunningham, W. R. (1987). Intellectual abilities and age. In K. W. Schaie, & C. Eisdorfer (Eds.) Annual review of gerontology and geriatrics (vol. 7, (pp. 117–134)). New York: Springer.

    Google Scholar 

  • Das, J. P., Naglieri, J. A., & Kirby, J. R. (1994). Assessment of cognitive processes. Needham Heights, MA: Allyn and Bacon.

    Google Scholar 

  • Datar, A., Sturm, R., & Magnabosco, J. L. (2004). Childhood overweight and academic performance: national study of kindergartners and first-graders. Obesity Research, 12, 58–68.

    PubMed  Google Scholar 

  • Davis, C. L., Tomporowski, P. D., Boyle, C. A., Waller, J. L., Miller, P. H., Naglieri, J. A., et al. (2007). Effects of aerobic exercise on overweight children’s cognitive functioning: A randomized controlled trial. Research Quarterly for Exercise and Sport.

  • Davranche, K., & Audiffren, M. (2004). Facilitating effects of exercise on information processing. Journal of Sports Sciences, 22, 419–428.

    PubMed  Google Scholar 

  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: cognitive functions, anatomy, and biochemistry. In D. T. Stuss, & R. T. Knight (Eds.) Principles of frontal lobe function (pp. 466–503). New York: Oxford University Press.

    Google Scholar 

  • Dishman, R. K., Berthound, H.-R., Booth, F. W., Cotman, C. W., Edgerton, R., & Fleshner, M. R., et al. (2006). Neurobiology of exercise. Obesity, 14(3), 345–356.

    PubMed  Google Scholar 

  • Dustman, R. E., Emmerson, R., & Shearer, D. (1994). Physical activity, age, and cognitive-neuropsychological function. Journal of Aging and Physical Activity, 2, 143–181.

    Google Scholar 

  • Dwyer, T., Coonan, W. E., Leitch, D. R., Hetzel, B. S., & Baghurst, P. A. (1983). An investigation of the effects of daily physical activity on the health of primary school students in South Australia. International Journal of Epidemiology, 12, 308–313.

    PubMed  Google Scholar 

  • Dwyer, T., Sallis, J. F., Blizzard, L., Lazarus, R., & Dean, K. (2001). Relation of academic performance to physical activity and fitness in children. Pediatric Exercise Science, 13, 225–237.

    Google Scholar 

  • Ellis, N. R. (1969). A behavioral research strategy in mental retardation: defense and critique. American Journal of Mental Deficiency, 73, 557–566.

    PubMed  Google Scholar 

  • Ellis, H. C., & Hunt, R. R. (1993). Fundamentals of cognitive psychology (5th ed.). Madison, WI: Brown and Benchmark.

    Google Scholar 

  • Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52, 119–130.

    PubMed  Google Scholar 

  • Falkner, N. H., Neumark-Sztainer, D., Story, M., Jeffery, R. W., Beuhring, T., & Resnick, M. D. (2001). Social, educational, and psychological correlates of weight status in adolescents. Obesity Research, 9, 32–42.

    PubMed  Google Scholar 

  • Folkins, C. H., & Sime, W. E. (1981). Physical fitness training and mental health. American Psychologist, 36, 373–389.

    PubMed  Google Scholar 

  • Gabler-Halle, D., Halle, J. W., & Chung, Y. B. (1993). The effects of aerobic exercise on psychological and behavioral variables of individuals with developmental disabilities: A critical review. Research in Developmental Disabilities, 14, 359–386.

    PubMed  Google Scholar 

  • Garlick, D. (2002). Understanding the nature of the general factor of intelligence: The role of individual differences in neural plasticity as an explanatory mechanism. Psychological Review, 109, 116–136.

    PubMed  Google Scholar 

  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., & Zijdenbos, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.

    PubMed  Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., & Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Science, 101, 8174–8179.

    Google Scholar 

  • Greenough, W. T., & Black, J. E. (1992). Induction of brain structure by experience: Substrates for cognitive development. In C. A. Nelson (Ed.) Developmental behavioral neuroscience (vol. Vol. 24, (pp. 155–200)). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hall, C. D., Smith, A. L., & Keele, S. W. (2001). The impact of aerobic activity on cognitive function in older adults: A new synthesis based on the concept of executive control. European Journal of Cognitive Psychology, 13, 279–300.

    Google Scholar 

  • Hillman, C. H., Castelli, D., & Buck, S. M. (2005). Physical fitness and neurocognitive function in healthy preadolescent children. Medicine & Science in Sports & Exercise, 37, 1967–1974.

    Google Scholar 

  • Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related potentials in a task switching paradigm. International Journal of Psychophysiology, 59, 30–39.

    PubMed  Google Scholar 

  • Hinkle, J. S., Tuckman, B. W., & Sampson, J. P. (1993). The psychology, physiology, and the creativity of middle school aerobic exercises. Elementary School Guidance & Counseling, 28(2), 133–145.

    Google Scholar 

  • Hughes, C. (2002). Executive functions and development: Emerging themes. Infant and Child Development, 11, 201–209.

    Google Scholar 

  • Huttenlocher, P. R. (1994). Synaptogenesis, synaptic elimination, and neural plasticity in human cerebral cortex. In C. A. Nelson (Ed.) Threats to optimal development: Integrating biological, psychological, and social risk factors (pp. 35–54). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178.

    PubMed  Google Scholar 

  • Ismail, A. H. (1967). The effects of a well-organized physical education programme on intellectual performance. Research in Physical Education, 1, 31–38.

    Google Scholar 

  • Jensen, A. R. (1998). The g factor. Westport, CT: Praeger.

    Google Scholar 

  • Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Kail, R. (2007). Longitudinal evidence that increases in processing speed and working memory enhance children’s reasoning. Psychological Science, 18(4), 312–313.

    PubMed  Google Scholar 

  • Keays, J. J., & Allison, K. R. (1995). The effects of regular moderate to vigorous physical activity on student outcomes. Canadian Journal of Public Health, 86, 62–65.

    Google Scholar 

  • Kirkendall, D. R. (1986). Effects of physical activity on intellectual development and academic performance. In M. Lee, H. M. Eckert, & G. A. Stull (Eds.) Effects of physical activity on children: A special tribute to Mabel Lee (pp. 49–63). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., & Harrison, C. R., et al. (1999a). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.

    PubMed  Google Scholar 

  • Kramer, A. F., Hahn, S., & Gopher, D. (1999b). Task coordination and aging: explorations of executive control processes in the task switching paradigm. Acta Psychologica, 1010, 339–378.

    Google Scholar 

  • Kramer, A. F., Hahn, S., & McAuley, E. (2000). Influence of aerobic fitness on the neurocognitive function of older adults. Journal of Aging and Physical Activity, 8, 379–385.

    Google Scholar 

  • Lareau, A. (2000). Social class and the daily lives of children: A study from the United States. Childhood: A Global Journal of Child Research, 7(2), 155–171.

    Google Scholar 

  • Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Li, X. (1995). A study of intelligence and personality in children with simple obesity. International Journal of Obesity Related Metabolic Disorders, 19, 355–357.

    Google Scholar 

  • Lipsey, M. W. (1990). Design sensitivity: statistical power for experimental research. Newbury Park, CA: Sage.

    Google Scholar 

  • Lyon, G. R. (1996). The need for conceptual and theoretical clarity in the study of attention, memory, and executive function. In N. A. Krasnegor (Ed.) Attention, memory, and executive function (pp. 3–9). London: Brooks.

    Google Scholar 

  • Mackintosh, N. J. (1998). IQ and human intelligence. Oxford, England: Oxford University Press.

    Google Scholar 

  • Mayer, R. E. (1998). Does the brain have a place in educational psychology? Educational Psychology Review, 10, 389–396.

    Google Scholar 

  • McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31, 66–81.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  Google Scholar 

  • Morgan, W. P. (1981). Psychological benefits of physical activity. In F. J. Nagle, & H. J. Montoye (Eds.) Exercise, health, and disease (pp. 299–314). Springfield, IL: Charles Corbin.

    Google Scholar 

  • Morgan, W. P., Roberts, J. A., Brand, F. R., & Feinerman, A. D. (1970). Psychological effects of chronic physical activity. Medicine and Science in Sports, 2, 213–217.

    PubMed  Google Scholar 

  • Naglieri, J. A. (2003). Current advances and intervention for children with learning disabilities. In A. Mastropoeri (Ed.), Advances in learning and behavioral disabilities: Volume 16. Identification and assessment (pp. 163–190).

  • Naglieri, J. A., & Das, J. P. (1997). Cognitive assessment system. Itasca, IL: Riverside.

    Google Scholar 

  • Naglieri, J. A., & Kaufman, J. C. (2001). Understanding intelligence, giftedness and creativity using PASS theory. Roeper Review, 23(3), 151–156.

    Google Scholar 

  • Nelson, C. A. (1999). Neural plasticity and human development. Current Directions in Psychological Science, 8, 42–45.

    Google Scholar 

  • Nelson, C. A. (2000). The neurobiological bases of early intervention. In J. P. Shonkoff, & S. J. Meisels (Eds.) Handbook of early childhood intervention ((pp. 204–227)2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • O’Boyle, M. W., & Gill, H. S. (1998). On the relevance of research findings in cognitive neuroscience to educational practice. Educational Psychology Review, 10, 397–409.

    Google Scholar 

  • Pate, R. R., Long, B. J., & Heath, G. W. (1994). Descriptive epidemiology of physical activity in adolescents. Pediatric Exercise Science, 6, 434–447.

    Google Scholar 

  • Pellis, S. M., & Pellis, V. C. (2007). Rough-and-tumble play and the development of the social brain. Current directions in psychological science, 16(2), 95–98.

    Google Scholar 

  • Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., & McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in adult dentate gyrus. Proceedings of the National Academy of Science, 104(13), 5638–5643.

    Google Scholar 

  • Plante, T. G., & Rodin, J. (1990). Physical fitness and enhanced psychological health. Current Psychology: Research & Reviews, 9, 3–24.

    Google Scholar 

  • Sallis, J. F., McKenzie, T. L., Kolody, B., Lewis, M., Marshall, S., & Rosengard, P. (1999). Effects of health-related physical education on academic achievement: Project SPARK. Research Quarterly for Exercise and Sport, 70, 127–134.

    PubMed  Google Scholar 

  • Sanders, A. F. (1998). Elements of human performance. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Shephard, R. J. (1997). Curricular physical activity and academic performance. Pediatric Exercise Science, 9, 113–126.

    Google Scholar 

  • Shephard, R. J., Volle, M., Lavallee, H., LaBarre, R., Jequier, J. C., & Rajic, M. (1984). Required physical activity and academic grades: A controlled longitudinal study. In I. Valimaki (Ed.) Children and sport (pp. 58–63). Berlin: Springer.

    Google Scholar 

  • Sibley, B. A., & Etnier, J. L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15, 243–256.

    Google Scholar 

  • Sowell, E. R., Thompson, P. M., Holmes, C. J., Batth, R., Jernigan, T. I., & Toga, A. W. (1999). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. NeuroImage, 9, 587–597.

    PubMed  Google Scholar 

  • Sowell, E. R., Thompson, P. M., Leonard, D. M., Welcome, S. E., Kan, F., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24, 8223–8231.

    PubMed  Google Scholar 

  • Spirduso, W. W., & Clifford, P. (1978). Replication of age and physical activity effects on reaction and movement time. Journal of Gerontology, 33, 26–30.

    PubMed  Google Scholar 

  • St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59(4), 745–759.

    Google Scholar 

  • Stockman, I. J. (2004). A theoretical framework for clinical intervention with pervasive developmental disorders. In I. J. Stockman (Ed.) Movement and action in learning and development: clinical implications for pervasive developmental disorders (pp. 21–31). New York: Elsevier.

    Google Scholar 

  • Stones, M. J., & Kozma, A. (1989). Age, exercise, and coding performance. Psychology and Aging, 4, 190–194.

    PubMed  Google Scholar 

  • Taras, H. (2005). Physical activity and student performance at school. Journal of School Health, 75, 214–218.

    PubMed  Google Scholar 

  • Taras, H., & Potts-Datema, W. (2005). Obesity and student performance at school. Journal of School Health, 75(8), 291–295.

    PubMed  Google Scholar 

  • Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research articles: A simplified methodology. http://work-learning.com/effect_sizes.htm.

  • Thelen, E. (2004). The central role of action in typical and atypical development: A dynamical systems perspective. In I. J. Stockman (Ed.) Movement and action in learning and development: Clinical implications for pervasive developmental disorders. New York: Elsevier.

    Google Scholar 

  • Tomporowski, P. D. (2003a). Cognitive and behavioral responses to acute exercise in youth: A review. Pediatric Exercise Science, 15, 348–359.

    Google Scholar 

  • Tomporowski, P. D. (2003b). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112, 297–324.

    PubMed  Google Scholar 

  • Tomporowski, P. D. (2006). Physical activity, cognition, and aging: A review of reviews. In L. W. Poon, W. J. Chodzko-Zajko, & P. D. Tomporowski (Eds.) Active living, cognitive functioning, and aging (pp. 15–32). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Tomporowski, P. D., & Ellis, N. R. (1984). Effects of exercise on the physical fitness, intelligence, and adaptive behavior of institutionalized mentally retarded adults. Applied Research in Mental Retardation, 5, 329–337.

    PubMed  Google Scholar 

  • Tomporowski, P. D., & Ellis, N. R. (1985). The effects of exercise training on the health, intelligence, and adaptive behavior of institutionalized mentally retarded adults: A systematic replication. Applied Research in Mental Retardation, 6, 456–473.

    Google Scholar 

  • Tomporowski, P. D., & Ellis, N. R. (1986). The effects of exercise on cognitive processes: A review. Psychological Bulletin, 99, 338–346.

    Google Scholar 

  • Tremblay, M. S., Inman, J. W., & Willms, J. D. (2000). The relationship between physical activity, self-esteem, and academic achievement. Pediatric Exercise Science, 12, 312–323.

    Google Scholar 

  • Tuckman, B. W. (1999). The effects of exercise on children and adolescents. In M. Hersen (Ed.) Handbook of pediatric and adolescent health (pp. 275–286). Boston: Allyn and Bacon.

    Google Scholar 

  • Tuckman, B. W., & Hinkle, J. S. (1986). An experimental study of the physical and psychological effects of aerobic exercise on schoolchildren. Health Psychology, 5(3), 197–207.

    PubMed  Google Scholar 

  • Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “Sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84, 699–715.

    PubMed  Google Scholar 

  • Welk, G. J., Morrow, J. R. J., & Falls, H. B. (2002). Fitnessgram reference guide. Dallas, TX: The Cooper Institute.

    Google Scholar 

  • Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative-developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7(2), 131–149.

    Article  Google Scholar 

  • Will, B., Galani, R., Kelche, C., & Rosenzweig, M. R. (2004). Recovery from brain injury in animal: Relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002). Progress in Neurobiology, 72, 167–182.

    PubMed  Google Scholar 

  • Wilmore, J. H., & Costill, D. L. (2004). Physiology of sport and exercise (3rd ed.). Champaign, IL: Human Kinetics.

    Google Scholar 

  • Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., & Staufenbiel, M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60, 1314–1323.

    PubMed  Google Scholar 

  • Zervas, Y., Apostolos, D., & Klissouras, V. (1991). Influence of physical exertion on mental performance with reference to training. Perceptual and Motor Skills, 73, 1215–1221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip D. Tomporowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomporowski, P.D., Davis, C.L., Miller, P.H. et al. Exercise and Children’s Intelligence, Cognition, and Academic Achievement. Educ Psychol Rev 20, 111–131 (2008). https://doi.org/10.1007/s10648-007-9057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-007-9057-0

Keywords

Navigation