Skip to main content
Log in

Genetic and environmental factors in familial clustering in physical activity

  • GENETIC EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

The goal of this study was to estimate the familial aggregation and quantify the contribution of genetic and environmental factors on physical activity (PA) habits of Portuguese families. The sample consisted of 2,375 nuclear families (parents and two offspring each) from different regions of Portugal with a total of 9,500 subjects. The assessment of PA was based on a psychometrically established questionnaire. This is a reliable and valid instrument to measure different PA indices (school/work, sport and leisure time). Familial aggregation was computed by factorial ANOVA. Familial correlations were calculated using FCOR in the SAGE software package. Heritability was estimated using variance-components methods implemented in the SOLAR software package. The main results are: (1) In all PA phenotypes, there was 1.34 to 1.99 times more variation in PA between families than within families, suggesting that PA aggregates in families (except work/school); (2) Subjects of the same generation tend to be more similar in their PA habits than subjects of different generations. (3) In all PA phenotypes studied, adjusted for the effects of multiple covariates, the proportion of phenotypic variance due to additive genetic factors ranged between 6% and 25%. In summary, there is substantial familial aggregation in PA, to which shared environmental factors appear to contribute somewhat more than shared genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization. Global strategy on diet, physical activity and health. Geneva 2003.

  2. Kohl HW 3rd. Physical activity and cardiovascular disease: evidence for a dose response. Med Sci Sports Exerc 2001;33:S472–83.

    Article  PubMed  Google Scholar 

  3. Durstine JL, Thompson PD. Exercise in the treatment of lipid disorders. Cardiol Clin 2001;19:471–88.

    Article  PubMed  CAS  Google Scholar 

  4. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc 2001;33:S484–92.

    Article  PubMed  CAS  Google Scholar 

  5. Rennie KL, Johnson L, Jebb SA. Behavioural determinants of obesity. Best Pract Res Clin Endocrinol Metab 2005;19:343–58.

    Article  PubMed  Google Scholar 

  6. Lee IM, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relation? Med Sci Sports Exerc 2001;33:S459–71.

    Article  PubMed  CAS  Google Scholar 

  7. Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F. Evidence based physical activity for school-age youth. J Pediatr 2005;146:732–7.

    Article  PubMed  Google Scholar 

  8. Sallis JF, Prochaska JJ, Taylor WC. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc 2000;32:963–75.

    Article  PubMed  CAS  Google Scholar 

  9. Buckworth J, Dishman RK. Determinants of exercise and physical activity. In: Bahrke M, editor. Exercise psychology. Champaign: Human Kinetics; 2002. p. 191–209.

    Google Scholar 

  10. Caspersen CJ, Nixon PA, DuRant RH. Physical activity epidemiology applied to children and adolescents. Exerc Sport Sci Rev 1998;26:341–403.

    Article  PubMed  CAS  Google Scholar 

  11. Sallis JF, Owen N. Physical activity & behavioral medicine. London: Sage Publications; 1999.

    Google Scholar 

  12. Bouchard C, Malina R, Pérusse L. Genetics of fitness and physical performance. Champaign: Human Kinetics; 1997.

    Google Scholar 

  13. Kaprio J, Koskenvuo M, Sarna S. Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog Clin Biol Res 1981;69 Pt C:37–46.

    PubMed  CAS  Google Scholar 

  14. Koopmans J, van Doornen L, Boomsma D. Smoking and sports participation. In: Goldbourt U, Faire U, Berg K, editors. Factors in coronary heart disease. Dordrecht: Kluwer Academic; 1994. p. 217–235.

    Google Scholar 

  15. Aarnio M, Winter T, Kujala UM, Kaprio J. Familial aggregation of leisure-time physical activity—a three generation study. Int J Sports Med 1997;18:549–56.

    Article  PubMed  CAS  Google Scholar 

  16. Lauderdale DS, Fabsitz R, Meyer JM, Sholinsky P, Ramakrishnan V, Goldberg J. Familial determinants of moderate and intense physical activity: a twin study. Med Sci Sports Exerc 1997;29:1062–8.

    PubMed  CAS  Google Scholar 

  17. Beunen G, Thomis M. Genetic determinants of sports participation and daily physical activity. Int J Obes Relat Metab Disord 1999;23(Suppl 3):S55–63.

    Article  PubMed  Google Scholar 

  18. Maia JA, Thomis M, Beunen G. Genetic factors in physical activity levels: a twin study. Am J Prev Med 2002;23:87–91.

    Article  PubMed  Google Scholar 

  19. Franks PW, Ravussin E, Hanson RL, Harper IT, Allison DB, Knowler WC, Tataranni PA, Salbe AD. Habitual physical activity in children: the role of genes and the environment. Am J Clin Nutr 2005;82:901–8.

    PubMed  CAS  Google Scholar 

  20. Joosen AM, Gielen M, Vlietinck R, Westerterp KR. Genetic analysis of physical activity in twins. Am J Clin Nutr 2005;82:1253–9.

    PubMed  CAS  Google Scholar 

  21. Carlsson S, Andersson T, Lichtenstein P, Michaelsson K, Ahlbom A. Genetic effects on physical activity: results from the Swedish Twin Registry. Med Sci Sports Exerc 2006;38:1396–1401.

    Article  PubMed  Google Scholar 

  22. Eriksson M, Rasmussen F, Tynelius P. Genetic factors in physical activity and the equal environment assumption—the Swedish young male twins study. Behav Genet 2006;36:238–47.

    Article  PubMed  Google Scholar 

  23. Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, Kyvik KO, Rose RJ, Kujala UM, Kaprio J, Harris JR, Pedersen NL, Hunkin J, Spector TD, de Geus EJ. Genetic influences on exercise participation in 37.051 twin pairs from seven countries. PLoS ONE 2006;1:1–7.

    Google Scholar 

  24. Stubbe JH, Boomsma DI, De Geus EJ. Sports participation during adolescence: a shift from environmental to genetic factors. Med Sci Sports Exerc 2005;37:563–70.

    Article  PubMed  Google Scholar 

  25. Perusse L, Leblanc C, Bouchard C. Inter-generation transmission of physical fitness in the Canadian population. Can J Sport Sci 1988;13:8–14.

    PubMed  CAS  Google Scholar 

  26. Simonen RL, Perusse L, Rankinen T, Rice T, Rao DC, Bouchard C. Familial aggregation of physical activity levels in the Quebec Family Study. Med Sci Sports Exerc 2002;34:1137–42.

    Article  PubMed  Google Scholar 

  27. Mitchell BD, Rainwater DL, Hsueh WC, Kennedy AJ, Stern MP, Maccluer JW. Familial aggregation of nutrient intake and physical activity: results from the San Antonio Family Heart Study. Ann Epidemiol 2003;13:128–35.

    Article  PubMed  Google Scholar 

  28. Perusse L, Tremblay A, Leblanc C, Bouchard C. Genetic and environmental influences on level of habitual physical activity and exercise participation. Am J Epidemiol 1989;129:1012–22.

    PubMed  CAS  Google Scholar 

  29. National Statistic Institute. Inquiry to the fecundity and family: definitive results: 1997. Lisboa: National Statistic Institute; 2001.

    Google Scholar 

  30. Vasconcelos MA, Maia JA. Is there a decline in physical activity? A cross-sectional study in children and youngsters of both gender from 10 to 19 years old. Port J Sports Sci 2001;1:44–52.

    Google Scholar 

  31. Ferreira JC, Marques AT, Maia JA. Physical fitness, physical activity and health in young population from Viseu—a study in children and youngsters of both gender from 10 to 18 years old. Viseu: Departamento Cultural—Instituto Superior Politécnico de Viseu; 2002.

    Google Scholar 

  32. Maia JA, Lopes V. Somatic growth, physical fitness, physical activity and coordenation. Longitudinal study in children from 6 to 10 years old from Azores Island. Porto 2003.

  33. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982;36:936–42.

    PubMed  CAS  Google Scholar 

  34. Montoye HJ, Kemper HC, Saris WH, Washburn RA. Measuring physical activity and energy expenditure. Champaign: Human Kinetics Publishers; 1996.

    Google Scholar 

  35. Philippaerts RM, Lefevre J. Reliability and validity of three physical activity questionnaires in Flemish males. Am J Epidemiol 1998;147:982–90.

    PubMed  CAS  Google Scholar 

  36. Durnin J, Passmore R. Energy work and leisure. London: Heinemann Educational Books; 1967.

    Google Scholar 

  37. S.A.G.E. Statistical analysis for genetic epidemiology (http://www.darwin.cwru.edu/sage/) 2006.

  38. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998;62:1198–211.

    Article  PubMed  CAS  Google Scholar 

  39. Freedson P, Evenson S. Familial aggregation in physical activity. Res Q Exerc Sport 1991;62:384–9.

    PubMed  CAS  Google Scholar 

  40. Andersen N, Wold B. Parental and peer influences on leisure-time physical activity in young adolescents. Res Q Exerc Sport 1992;63:341–8.

    Google Scholar 

  41. Cleland V, Venn A, Fryer J, Dwyer T, Blizzard L. Parental exercise is associated with Australian children’s extracurricular sports participation and cardiorespiratory fitness: a cross-sectional study. Int J Behav Nutr Phys Activ 2005;2:1–9.

    Article  Google Scholar 

  42. Fogelholm M, Nuutinen O, Pasanen M, Myohanen E, Saatela T. Parent–child relationship of physical activity patterns and obesity. Int J Obes Relat Metab Disord 1999;23:1262–8.

    Article  PubMed  CAS  Google Scholar 

  43. Gottlieb NH, Chen MS. Sociocultural correlates of childhood sporting activities: their implications for heart health. Soc Sci Med 1985;21:533–9.

    Article  PubMed  CAS  Google Scholar 

  44. Raudsepp L, Viira R. Influence of parents’ and siblings’ physical activity on activity levels of adolescents. Eur J Phys Educ 2000;5:169–78.

    Google Scholar 

  45. Surís J, Parera N. Don’t stop, don’t stop: physical activity and adolescence. Int J Med Health 2005;17:67–80.

    Google Scholar 

  46. Wold B, Andersen N. Health promotion aspects of family and peer influences on sport participation. Int J Sport Psychol 1992;23:343–59.

    Google Scholar 

  47. Sallis JF, Patterson TL, Buono MJ, Atkins CJ, Nader PR. Aggregation of physical activity habits in Mexican-American and Anglo families. J Behav Med 1988;11:31–41.

    Article  PubMed  CAS  Google Scholar 

  48. Moore L, Lombardi D, White M, Campbell J, Oliveria S, Ellison C. Influence of parents’ physical activity levels on activity levels of young children. J Pediatr 1991;118:215–9.

    Article  PubMed  CAS  Google Scholar 

  49. Schor EL. The influence of families on child health. Family behaviors and child outcomes. Pediatr Clin North Am 1995;42:89–102.

    PubMed  CAS  Google Scholar 

  50. Taylor WC, Baranowski T, Sallis JF. Family determinants of childhood physical activity: a social cognitive model. In: Dishman RK, editor. Advances in exercise adherence. Champaign: Human Kinetics; 1994. p. 319–342.

    Google Scholar 

  51. Sallis JF. A north American perspective on physical activity. In: Cameron J, Bar-Or O, editors. New horizonts in pediatric exercise science. Champaign: Human Kinetics; 1995. p. 221–234.

    Google Scholar 

  52. Rossow I, Rise J. Concordance of parental and adolescent health behaviors. Soc Sci Med 1994;38:85–92.

    Article  Google Scholar 

  53. Duncan SC, Duncan TE, Strycker LA. Sources and types of social support in youth physical activity. Health Psychol 2005;24:3–10.

    Article  PubMed  Google Scholar 

  54. Yang X, Telama R, Laakso L. Parents’ physical activity, socioeconomic status and education as predictors of physical activity and sport among children and youths—a 12 year follow-up study. Int Rev Sociol Sport 1996;31:273–291.

    Article  Google Scholar 

  55. Wagner A, Klein-Platat C, Haan M, Arveiler D, Shlienger J, Simon C. Relations entre niveau d’activité physique des collégiens et celui de leurs parents: associations avec le niveau socio-économique. Revue d’Epidemiologie et de Santé Publique 2002;50:74–5.

    Google Scholar 

  56. Boomsma DI, van den Bree MB, Orlebeke JF, Molenaar PC. Resemblances of parents and twins in sports participation and heart rate. Behav Genet 1989;19:123–41.

    Article  PubMed  CAS  Google Scholar 

  57. Willemsen G, Vink JM, Boomsma DI. Assortative mating may explain spouses’ risk of same disease. BMJ 2003;326:396.

    Article  PubMed  Google Scholar 

  58. Rao DC, Vogler GP. Assessing genetic and cultural heritabilities. In: Goldbourt U, de Faire U, Berg K, editors. Genetic factors in coronary heart disease. Dordrecht: Kluwer Academic, 1990. p. 71–81.

    Google Scholar 

Download references

Acknowledgment

This study was supported by the Portuguese Foundation of Science and Technology: SFRH/BD/20166/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André F. Seabra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seabra, A.F., Mendonça, D.M., Göring, H.H.H. et al. Genetic and environmental factors in familial clustering in physical activity. Eur J Epidemiol 23, 205–211 (2008). https://doi.org/10.1007/s10654-008-9222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-008-9222-x

Keywords

Navigation