Skip to main content
Log in

Plasma homocysteine is adversely associated with glomerular filtration rate in asymptomatic black and white young adults: the Bogalusa heart study

  • Renal Diseases
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

That plasma homocysteine is elevated markedly in renal dysfunction is well recognized. But whether the increased homocysteine is an independent correlate of glomerular filtration rate, a marker of renal function, in asymptomatic younger individuals is not clear. The aim of this study was to determine the association between plasma homocysteine and renal function in a biracial (black–white) community-based cohort of asymptomatic young adults. Plasma homocysteine along with cardiovascular disease risk factor variables were measured in 805 white and 330 black subjects, ages 24–44 years, enrolled in the Bogalusa Heart Study. Modification of Diet in Renal Disease Study equation was used to calculate the estimated glomerular filtration rate (eGFR) from serum creatinine level. Males versus females showed higher homocysteine levels (8.83 ± 3.16 vs. 7.35 ± 2.84 μmol/L, p < 0.0001) and lower eGFR (99.1 ± 17.6 vs. 102.5 ± 21.0 mL/min/1.73 m2, p = 0.024). Whites versus blacks had lower eGFR (97.3 ± 18.0 vs. 110.0 ± 20.6 mL/min/1.73 m2, p < 0.0001). In a multivariate regression analysis that included age, race, sex, body mass index, blood pressure, lipoprotein variables, insulin resistance index and homocysteine, white race, age and homocysteine, in that order, were independently and negatively associated with eGFR. The odds ratio (95% confidence interval) of individuals in the homocysteine quintiles II, III, IV and V vs. I for having the risk of impaired eGFR defined as <10th percentile was 2.28 (0.95–5.50, p = 0.065), 2.97 (1.24–7.12, p = 0.015), 3.32 (1.45–7.60, p = 0.005) and 6.99 (3.06–15.94, p < 0.0001), respectively. Homocysteine is an independent correlate of renal function in asymptomatic black and white young adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pizzolo F, Friso S, Olivieri O, et al. Homocysteine, traditional risk factors and impaired renal function in coronary artery disease. Eur J Clin Invest. 2006;36:698–704. doi:10.1111/j.1365-2362.2006.01714.x.

    Article  PubMed  CAS  Google Scholar 

  2. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA. 1995;274:1049–57. doi:10.1001/jama.274.13.1049.

    Article  PubMed  CAS  Google Scholar 

  3. McCullough PA, Li S, Jurkovitz CT, et al. Chronic kidney disease, prevalence of premature cardiovascular disease, and relationship to short-term mortality. Am Heart J. 2008;156:277–83. doi:10.1016/j.ahj.2008.02.024.

    Article  PubMed  Google Scholar 

  4. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108:2154–69. doi:10.1161/01.CIR.0000095676.90936.80.

    Article  PubMed  Google Scholar 

  5. Bostom AG, Culleton BF. Hyperhomocysteinemia in chronic renal disease. J Am Soc Nephrol. 1999;10:891–900.

    PubMed  CAS  Google Scholar 

  6. Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH. The kidney and homocysteine metabolism. J Am Soc Nephrol. 2001;12:2181–9.

    PubMed  CAS  Google Scholar 

  7. Rodionov RN, Lentz SR. The homocysteine paradox. Arterioscler Thromb Vasc Biol. 2008;28:1031–3. doi:10.1161/ATVBAHA.108.164830.

    Article  PubMed  CAS  Google Scholar 

  8. Samuelsson O, Lee DM, Attman PO, et al. The plasma levels of homocysteine are elevated in moderate renal insufficiency but do not predict the rate of progression. Nephron. 1999;82:306–11. doi:10.1159/000045445.

    Article  PubMed  CAS  Google Scholar 

  9. Hovind P, Tarnow L, Rossing P, et al. Progression of diabetic nephropathy: role of plasma homocysteine and plasminogen activator inhibitor-1. Am J Kidney Dis. 2001;38:1376–80. doi:10.1053/ajkd.2001.29261.

    Article  PubMed  CAS  Google Scholar 

  10. Francis ME, Eggers PW, Hostetter TH, Briggs JP. Association between serum homocysteine and markers of impaired kidney function in adults in the United States. Kidney Int. 2004;66:303–12. doi:10.1111/j.1523-1755.2004.00732.x.

    Article  PubMed  CAS  Google Scholar 

  11. Schäfer SA, Müssig K, Stefan N, Häring HU, Fritsche A, Balletshofer BM. Plasma homocysteine concentrations in young individuals at increased risk of type 2 diabetes are associated with subtle differences in glomerular filtration rate but not with insulin resistance. Exp Clin Endocrinol Diabetes. 2006;114:306–9. doi:10.1055/s-2006-924073.

    Article  PubMed  CAS  Google Scholar 

  12. Robles NR, Sanchez Munoz-Torrero JF, Garcia Gallego F, Velasco Gemio J, Escola JM. Homocysteinemia in hypertensive patients with renal target organ damage (mild renal dysfunction). Eur J Med Res. 2008;13:196–9.

    PubMed  CAS  Google Scholar 

  13. Foley RN, Wang C, Collins AJ. Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study. Mayo Clin Proc. 2005;80:1270–7. doi:10.4065/80.10.1270.

    Article  PubMed  Google Scholar 

  14. Berenson GS, McMahan CA, Voors AW, Webber LS, Srinivasan SR, Frank GC, et al. In: Andrews C, Hester HE, editors. Cardiovascular risk factors in children—the early natural history of atherosclerosis and essential hypertension. New York: Oxford University Press; 1980. p. 47–123.

    Google Scholar 

  15. Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocyst(e)ine with the Abbott IMx analyzer. Clin Chem. 1995;41:991–4.

    PubMed  CAS  Google Scholar 

  16. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20:470–4.

    PubMed  CAS  Google Scholar 

  17. Srinivasan SR, Berenson GS. Serum lipoproteins in children and methods for study. In: Lewis LA, editor. CRC handbook of electrophoresis vol III: lipoprotein methodology and human studies. Boca Raton, FL: CRC Press; 1983. p. 185–203.

    Google Scholar 

  18. Levey AS, Coresh J, Balk E, et al. National kidney foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med. 2003;139:137–47.

    PubMed  Google Scholar 

  19. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. doi:10.1007/BF00280883.

    Article  PubMed  CAS  Google Scholar 

  20. Bostom AG, Lathrop L. Hyperhomocysteinemia in end-stage renal disease: prevalence, etiology, and potential relationship to arteriosclerotic outcomes. Kidney Int. 1997;52:10–20. doi:10.1038/ki.1997.298.

    Article  PubMed  CAS  Google Scholar 

  21. Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am J Nephrol. 2008;28:254–64. doi:10.1159/000110876.

    Article  PubMed  CAS  Google Scholar 

  22. Brattström L, Lindgren A, Israelsson B, Andersson A, Hultberg B. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med. 1994;236:633–41.

    Article  PubMed  Google Scholar 

  23. Chen YF, Li PL, Zou AP. Effect of hyperhomocysteinemia on plasma or tissue adenosine levels and renal function. Circulation. 2002;106:1275–81. doi:10.1161/01.CIR.0000027586.64231.1B.

    Article  PubMed  CAS  Google Scholar 

  24. Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal. 2006;8:1597–607. doi:10.1089/ars.2006.8.1597.

    Article  PubMed  CAS  Google Scholar 

  25. Werstuck GH, Lentz SR, Dayal S, et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001;107:1263–73. doi:10.1172/JCI11596.

    Article  PubMed  CAS  Google Scholar 

  26. Outinen PA, Sood SK, Pfeifer SI, et al. Homocysteine-induced endoplasmic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood. 1999;94:959–67.

    PubMed  CAS  Google Scholar 

  27. Jakubowski H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J. 1999;13:2277–83.

    PubMed  CAS  Google Scholar 

  28. van Guldener C, Stam F, Stehouwer CD. Hyperhomocysteinaemia in chronic kidney disease: focus on transmethylation. Clin Chem Lab Med. 2005;43:1026–31. doi:10.1515/CCLM.2005.180.

    Article  PubMed  CAS  Google Scholar 

  29. Ninomiya T, Kiyohara Y, Kubo M, et al. Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis. 2004;44:437–45. doi:10.1016/S0272-6386(04)00813-3.

    Article  PubMed  Google Scholar 

  30. Jager A, Kostense PJ, Nijpels G, et al. Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler Thromb Vasc Biol. 2001;21:74–81.

    PubMed  CAS  Google Scholar 

  31. Shankar A, Wang JJ, Chua B, Rochtchina E, Flood V, Mitchell P. Positive association between plasma homocysteine level and chronic kidney disease. Kidney Blood Press Res. 2008;31:55–62. doi:10.1159/000114300.

    Article  PubMed  CAS  Google Scholar 

  32. Astor BC, Hallan SI, Miller ERIII, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol. 2008;167:1226–34. doi:10.1093/aje/kwn033.

    Article  PubMed  Google Scholar 

  33. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50. doi:10.1001/jama.291.7.844.

    Article  PubMed  CAS  Google Scholar 

  34. Tozawa M, Iseki K, Iseki C, Oshiro S, Ikemiya Y, Takishita S. Influence of smoking and obesity on the development of proteinuria. Kidney Int. 2002;62:956–62. doi:10.1046/j.1523-1755.2002.00506.x.

    Article  PubMed  Google Scholar 

  35. Hsu CY, Chertow GM, Curhan GC. Methodological issues in studying the epidemiology of mild to moderate chronic renal insufficiency. Kidney Int. 2002;61:1567–76. doi:10.1046/j.1523-1755.2002.00299.x.

    Article  PubMed  Google Scholar 

  36. Jacques PF, Bostom AG, Williams RR, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93:7–9.

    PubMed  CAS  Google Scholar 

  37. Verhoef P, Stampfer MJ, Buring JE, et al. Homocysteine metabolism and risk of myocardial infarction: relation with vitamins B6, B12, and folate. Am J Epidemiol. 1996;143:845–59.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants AG-16592 from the National Institute on Aging, 0855082E from American Heart Association and HL-38844 from the National Heart, Lung, Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Berenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, L., Chen, W., Srinivasan, S.R. et al. Plasma homocysteine is adversely associated with glomerular filtration rate in asymptomatic black and white young adults: the Bogalusa heart study. Eur J Epidemiol 24, 315–319 (2009). https://doi.org/10.1007/s10654-009-9340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9340-0

Keywords

Navigation