Skip to main content
Log in

Occurrences of six steroid estrogens from different effluents in Beijing, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentration levels of six natural and anthropogenic origin steroid estrogens, namely, diethylstilbestrol (DES), estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), and estradiol-17-valerate (Ev), from different effluents in Beijing were assessed. Sampling sites include two wastewater treatment plants (WWTPs), a chemical plant, a hospital, a pharmaceutical factory, a hennery, and a fish pool. In general, concentrations of estrogens in the effluents varied from no detection (nd) to 11.1 ng/l, 0.7 to 1.2 × 103 ng/l, nd to 67.4 ng/l, nd to 4.1 × 103 ng/l, nd to 1.2 × 103 ng/l, and nd to 11.2 ng/l for DES, E1, E2, EE2, E3, and Ev, respectively. The concentration levels of steroid estrogens from different effluents decreased in the order of pharmaceutical factory and WWTP inlets > hospital > hennery > chemical factory > fish pool. This study indicated that natural estrogens E1, E2, and E3 and synthetic estrogen EE2 are the dominant steroid estrogens found in the different Beijing effluents. For source identification, an indicator (hE = E3/(E1 + E2 + E3)) was used to trace human estrogen excretion. Accordingly, hE in effluents from the hospital and WWTP inlets exceeded 0.4, while much smaller values were obtained for the other effluents. Human excretions were the major contributor of natural estrogens in municipal wastewater. Estimation results demonstrated that direct discharge was the major contributor of steroid estrogen pollution in receiving waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, H., Siegrist, H., Halling-Sorensen, B., & Ternes, T. A. (2003). Fate of estrogens in a municipal sewage treatment plant. Environmental Sciences and Technology, 37, 4021–4026.

    Article  CAS  Google Scholar 

  • Baronti, C., Curini, R., D’Ascenzo, G., Di, C. A., Gentili, A., & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Sciences and Technology, 34, 5059–5066.

    Article  CAS  Google Scholar 

  • Beardmore, J. A., Mair, G. C., & Lewis, R. I. (2001). Monosex male production in finfish as exemplified by tilapia: Applications, problems, and prospects. Aquaculture, 197, 283–301.

    Article  Google Scholar 

  • Beijing Statistical Yearbook (2006). Beijing Municipal Bureau of Statistics. www.bjstats.gov.cn/tjnj/2006-tjnj/content/mV98_08-10.htm.

  • Belfroid, A., Van der, H. A., Vetaak, A., Schäfer, A., Rijs, G., Wegener, J., et al. (1999). Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Science of the Total Environment, 225, 101–108.

    Article  CAS  Google Scholar 

  • Braga, O., Smythe, G., Schafer, A. I., & Feitz, R. J. (2005). Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environmental Sciences and Technology, 39, 3351–3358.

    Article  CAS  Google Scholar 

  • Brown, N., Nagarkatti, M., & Nagarkatti, P. S. (2006). Diethylstilbestrol alters positive and negative selection of T cells in the thymus and modulates T-cell repertoire in the periphery. Toxicology and Applied Pharmacology, 212, 119–126.

    Article  CAS  Google Scholar 

  • Campbell, C. G., Borglin, S. E., Green, F. B., Grayson, A., Wozei, E., & Stringfellow, W. T. (2006). Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere, 65, 1265–1280.

    Article  CAS  Google Scholar 

  • Chen, C., Wen, T., Wang, G., Cheng, H., Lin, Y., & Lien, G. W. (2007). Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of the Total Environment, 378, 352–365.

    Article  CAS  Google Scholar 

  • D’Ascenzo, G., Di, C. A., Gentili, A., Mancini, R., Mastropasqua, R., Nazzari, M., & Samperi, R. (2003). Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment, 302, 199–209.

    Article  Google Scholar 

  • Desbrow, C., Routledge, E. J., Brighty, G. C., Sumpter, J. P., & Waldock, M. (1998). Identification of estogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Sciences and Technology, 32, 1549–1558.

    Article  CAS  Google Scholar 

  • Ford, C. D., Johnson, G. H., & Smith, W. G. (1983). Natural killer cells in in utero diethylstilbesterol-exposed patients. Gynecologic Oncology, 16, 400–404.

    Article  CAS  Google Scholar 

  • Giusti, R. M., Iwamoto, K., & Hatch, E. E. (1995). Diethylstilbestrol revisited: A review of the long-term health effects. Annals Internal Medicine, 122, 778–788.

    CAS  Google Scholar 

  • Gomes, R. L., Acioglu, E., Scimshaw, M. D., & Lester, J. N. (2004). Steroid estrogen determination in sediment and sewage sludge: A critique of sample preparation and chromatographic/mass spectrometry considerations, incorporating a case study in method development. Trends in Analytical Chemistry, 23, 737–744.

    Article  CAS  Google Scholar 

  • Hansen, P. D., Dizer, H., Hock, B., Marx, A., Sherry, J., McMaster, M., et al. (1998). Vitellogenin-a biomarker for endocrine disruptors. Trends in Analytical Chemistry, 17, 448–451.

    Article  CAS  Google Scholar 

  • Hurley, M. A., Matthiessen, P., & Pickering, A. D. (2004). A model for environmental sex reversal in fish. Journal of Theoretical Biology, 227, 159–165.

    Article  CAS  Google Scholar 

  • Jin, S., Yang, F., Liao, T., Hui, Y., & Xu Y. (2008). Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China. Environmental Toxicology and Chemistry, 27, 146–153.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 256(2–3), 163–173.

    Article  CAS  Google Scholar 

  • Johnson, A. C., & Sumpter, J. P. (2001). Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Sciences and Technology, 35, 4697–4703.

    Article  CAS  Google Scholar 

  • Labadie, P., & Budzinski, H. (2005). Determination of steroidal hormone profiles along the Jalle d’Eysines River (near Bordeaus, France). Environmental Sciences and Technology, 39, 5113–5120.

    Article  CAS  Google Scholar 

  • Labadie, P., & Budzinski, H. (2006). Alteration of steroid hormone profile in juvenile turbot (Psetta maxima) as a consequence of short-term exposure to 17a-ethynylestradiol. Chemosphere, 64, 1274–1286.

    Article  CAS  Google Scholar 

  • Lai, K. M., Johnson, K. L., Scrimshaw, M. D., & Lester, J. N. (2000). Binding of water borne steroid estrogens to solid phases in river and estuarine systems. Environmental Sciences and Technology, 34, 3890–3894.

    Article  CAS  Google Scholar 

  • Layton, A. C., Gregory, B. W., Seward, J. R., Schultz, T. W., & Sayler, G. S. (2000). Mineralization of steroidal hormones by biosolids in wastewater treatment systems in Tennessee U.S.A. Environmental Sciences and Technology, 34, 3925–3931.

    Article  CAS  Google Scholar 

  • Lee, H. B., & Peart, T. E. (1998). Determination of 17β-estradiol and its metabolites in sewage effluent by solid phase extraction and gas chromatography/mass spectrometry. The Journal of AOAC International, 81(6), 1209–1216.

    CAS  Google Scholar 

  • Lei, B., Huang, S., Zhou, Y., Wang, D., & Wang, Z. (2009). Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Chemosphere, 76, 36–42.

    Article  CAS  Google Scholar 

  • Legler, J. (2001). Development and application of in vitro and in vivo reporter gene assays for the assessment of (xeno-) estrogenic compounds in the aquatic environment. Department of Toxicology, Wageningen University.

  • Legler, J., Dennekamp, M., Vethaak, A. D., & Brouwer, A. (2002). Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Science of the Total Environment, 293, 69–83.

    Article  CAS  Google Scholar 

  • Lintelmann, J., Katayama, A., Kurihara, N., Shore, L., & Wenzel, A. (2003). Endocrine disruptors in the environment. Pure and Appllied Chemistry, 75, 631–681.

    Article  CAS  Google Scholar 

  • Ma, M., Rao, K., & Wang, Z. (2008). Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China. Environmental Pollution, 147, 331–336.

    Article  Google Scholar 

  • Maggs, J. L., Grimmer, S. F. M., L’ e-Orme, M., Breckerridge, A. M., Park, B. K., & Gilmore, I. T. (1983). The biliary and urinary metabolites of [3H] 17a-ethynylestradiol in women. Xenobiotica, 13, 421–431.

    Article  CAS  Google Scholar 

  • Orlando, E. F., Kolok, A. S., Binzcik, G. A., Gates, J. L., Horton, M. K., Lambright, C. S., et al. (2004). Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environmental Health Perspectives, 112, 353–358.

    Article  CAS  Google Scholar 

  • Petrovic, M., Solé, M., de Alda, M. J. L., & Barceló, D. (2002). Endocrine disruptors in sewage treatment plants, receiving river waters, and sediments: Integration of chemical analysis and biological effects pm feral carp. Environmental Toxicology Chemistry, 21, 2146–2156.

    Article  CAS  Google Scholar 

  • Pierre, L., & Hélène, B. (2005). Determination of steroidal hormone profiles along the Jalle d’Eysines River (near Bordeaux, France). Environmental Sciences and Technology, 39, 5113–5120.

    Article  Google Scholar 

  • Purdom, C. E., Hardiman, P. A., Bye, V. J., Eno, N. C., Tyler, C. R., & Sumpter, J. P. (1994). Estrogenic effects of effluents from sewage treatment works. Chemical Ecology, 8, 275–285.

    Article  CAS  Google Scholar 

  • Ranney, R. E. (1977). Comparative metabolism of 17a-ethynyl steroids used in oral contraceptives. Journal of Toxicology and Environmental Health, 3, 139–166.

    Article  CAS  Google Scholar 

  • Reed, M. J., Fotherby, K., & Steele, S. J. (1972). Metabolism of ethynyloestradiol in man. Journal of Endocrinology, 55, 351–361.

    Article  CAS  Google Scholar 

  • Ren, H., Ji, S., Naeem ud din, A., Wang, D., & Cui, C. (2007). Degradation characteristics and metabolic pathway of 17a-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere, 66(2), 340–346.

    Article  CAS  Google Scholar 

  • Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., & Sumpter, J. P. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Sciences and Technology, 32, 1559–1565.

    Article  CAS  Google Scholar 

  • Soto, A. M., Calabro, J. M., Prechtl, N. V., Yau, A. Y., Orlando, E. F., Daxenberger, A., et al. (2004). Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in eastern Nebraska, USA. Environmental Health Perspectives, 112, 346–352.

    Article  CAS  Google Scholar 

  • Sun, Q., Deng, S., Huang, J., Shen, G., & Yu, G. (2007). Contributors to estrogenic activity in wastewater from a large wastewater treatment plant in Beijing, China. Environmental Toxicology and Pharmacology, 25, 20–26.

    Article  Google Scholar 

  • Strussmann, C. A., Takshima, F., & Toda, K. (1996). Sex differentiation and hormonal feminization in pejerrey Odontesthes bonariensis. Aquaculture, 139, 31–45.

    Article  CAS  Google Scholar 

  • Ternes, T. A., Kreckel, P., & Mueller, J. (1999). Behaviour and occurrence of estrogens in municipal sewage treatment plants II. Aberobic batch experiments with activated sludge. Science of the Total Environment, 255, 91–99.

    Article  Google Scholar 

  • Travis, A. H., Donald, A. G., & Ann, C. W. (2003). Manure-borne estrogens as potential environmental contaminants: Review. Environmental Sciences and Technology, 37, 5471–5478.

    Article  Google Scholar 

  • Zha, J., Sun, L., Zhou Y., Phlip, A. S., Ma, M., & Wang, Z. (2008). Assessment of 17a-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow (Gobiocypris rarus). Toxicology and Appllied Pharmacology, 226, 298–308.

    Article  CAS  Google Scholar 

  • Zhou, Y., Zhou, J., Xu, Y., Zha, J., Ma, M., & Wang, Z. (2009). An alternative method for the determination of estrogens in surface water and wastewater treatment plant effluent using pre-column trimethylsilyl derivatization and gas chromatography/mass spectrometry. Environmental Monitoring and Assessment, 158, 35–49.

    Article  CAS  Google Scholar 

  • Zuo, Y., Zhang, K., & Deng, Y. (2005). Occurrence and photochemical degradation of 17a-ethinylestradiol in Acushnet river estuary. Chemosphere, 63, 1583–1590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zha, J., Xu, Y. et al. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environ Monit Assess 184, 1719–1729 (2012). https://doi.org/10.1007/s10661-011-2073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2073-z

Keywords

Navigation