Skip to main content
Log in

T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A genetic linkage map of chromosome 6 was constructed by using 270 recombinant inbred lines originated from an upland cotton cross (Yumian 1 × T586) F2 population. The genetic map included one morphological (T1) and 18 SSR loci, covering 96.2 cM with an average distance of 5.34 cM between two markers. Based on composite interval mapping (CIM), QTL(s) affecting lint percentage, fiber length, fiber length uniformity, fiber strength and spiny bollworm resistance (Earias spp.) were identified in the t1 locus region on chromosome 6. The allele(s) originating from T586 of QTLs controlling lint percentage increased the trait phenotypic value while the alleles originating from Yumian 1 of QTLs affecting fiber length, fiber length uniformity, fiber strength and spiny bollworm resistance increased the trait phenotypic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  • Butler GD, Wilson FD, Fishler G (1991) Cotton leaf trichomes and populations of Empoasca lybica (Homoptera: Cicadellidae) and Bemisia tabaci (Homoptera: Aleyrodidae). Crop Prot 10:461–464

    Article  Google Scholar 

  • Endrizzi JE (1975) Monosomic analysis of 23 mutant loci in cotton. J Hered 66:163–165

    Google Scholar 

  • Endrizzi JE, Kohel RJ (1966) Use of telosomes in mapping three chromosomes in cotton. Genetics 54:535–555

    PubMed  CAS  Google Scholar 

  • Guo WZ, Ma GJ, Zhu YC, Yi CX, Zhang TZ (2006) molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland cotton. J Integrat Plant Biol 48:320–326

    Article  CAS  Google Scholar 

  • Han ZG, Guo WZ, Song XL, Zhang TZ (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Gen Genomics 272:308–327

    Article  CAS  Google Scholar 

  • Han ZG, Wang CB, Song XL, Guo WZ, Guo JY, Li CH, Chen XY, Zhang TZ (2006).Characteristics, development and mapping of Gossypium hissutum derived EST-SSRS in allotetraploid cotton. Theor Appl Genet 112:430-439

    Article  PubMed  CAS  Google Scholar 

  • Kloth RH (1993) New evidence relating the pilose allele and micronaire reading in cotton. Crop Sci 33:683–687

    Article  Google Scholar 

  • Kloth RH (1995) Quantitative trait loci affecting cotton fiber are linked to the t1 locus in upland cotton. Theor Appl Genet 91:762–768

    Article  Google Scholar 

  • Knight RL (1952) The genetics of jassid resistance in cotton. I. The genes H1 and H2. J Genet 51:47–66

    Google Scholar 

  • Kohel RJ, Lewis CF, Richmond TR (1967) Isogenic lines in American upland cotton, Gossypium hirsutum L.: preliminary evaluation of lint measurements. Crop Sci 7:67–70

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lacape JM, Nguyen TB, Thibivilliers S, Bojinov B, Courtois B, Cantrell RG, Burr B, Hau B (2003) A combined RFLP–SSR–AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome 46:612–626

    Article  PubMed  CAS  Google Scholar 

  • Lee JA (1964) Effects of the pilose allele, H2, on a long staple upland cotton. Crop Sci 4:442–443

    Article  Google Scholar 

  • Lee JA (1984) Effects of two pilosity alleles on agronomic and fiber traits in upland cotton. Crop Sci 24:127–129

    Article  Google Scholar 

  • Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Percy RG, Kohel RJ (1999) Qualitative genetics. In: Smith CW, Cothren JT (eds) Cotton. Origin, history, technology, and production. New York, Wiley, pp 319–360

    Google Scholar 

  • Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006) Mapping Fiber and Yield QTLs with Main, Epistatic, and QTL 3 Environment Interaction Effects in Recombinant Inbred Lines of Upland Cotton. Crop Sci 46:61–66

    Article  CAS  Google Scholar 

  • Simpson DM (1947) Fuzzy leaf in cotton and its association with short lint. J Hered 38:153–156

    Google Scholar 

  • Smith CW (1992) History and status of host plant resistance in cotton to insects in the United States. Adv Agron 48:251–296

    Article  Google Scholar 

  • Stelly DM (1993) Interfacing cytogenetics with the cotton genome mapping effort. In: Proceedings of the Beltwide Cotton Conference, New Orleans, La., 10–14 January 1993. National Cotton Council, Memphis, Tenn, pp 1545–1550

  • Summy KR, King EG (1992) Cultural control of cotton insect pests in the United States. Crop Protect 11:307–319

    Article  Google Scholar 

  • Tang QY, Feng MG (2003) Data Processing System V6.01 for Windows 9x/xp. China Science Press. http://www.chinadps.net/

  • Thomson LJ, Lee JA (1980) Insect resistance in cotton: a review and prospectus for Australia. J Aust Inst Agric Sci 1980:75–86

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen The Netherlands

    Google Scholar 

  • Voorrips RE (2006) MapChart 2.2: software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen The Netherlands

    Google Scholar 

  • Wang SC, Basten CJ, and Zeng ZB (2006) Windows QTL Cartographer WinQtlcartV2.5. Statistical Genetics, North Carolina State University. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wilson FD, George BW (1986) Smoothleaf and hirsute cottons: response to insect pests and yield in Arizona. J Econ Entomol 79:229–232

    Google Scholar 

  • Wilson RL, Wilson FD (1975) Effect of pilose, pubescent, and smooth cottons on the cotton leafperforator. Crop Sci 15:807–809

    Article  Google Scholar 

  • Yi CX, Zhang TZ, Guo WZ (2001) Morphological and molecular tagging of lint percent QTLs in upland cotton. Acta Agron Sinica 27:781–786 (In Chinese)

    Google Scholar 

  • Zhang J, Guo WZ, Zhang TZ (2002) Molecular linkage map of allotetraploid (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet 105:1166–1174

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Xiao YH, Luo M, Li XB, Luo XY, Hou L, Li DM, Y Pei (2005) Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica 144:91–99

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by the Natural Science Foundation of China (30370898, 30571187), and Hi-tech Research and Development Program of China (2006AA10Z1D3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, Q., Zhang, Z., Hu, M. et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica 158, 241–247 (2007). https://doi.org/10.1007/s10681-007-9446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9446-y

Keywords

Navigation