Skip to main content
Log in

QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Primitive cottons (Gossypium spp.) represent resources for genetic improvement. Most primitive accessions are photoperiod sensitive; they do not flower under the long days of the U.S. cotton belt. Molecular markers were used to locate quantitative trait loci (QTLs) for node of first fruiting branch (NFB), a trait closely related to flowering time in cotton. An F2 population consisted of 251 plants from the cross of a day neutral cultivar Deltapine 61, and a photoperiod sensitive accession Texas 701, were used in this study. Segregation in the population revealed the complex characteristics of NFB. Interval mapping and multiple QTL mapping were used to determine QTLs contributing to NFB. Three significant QTLs were mapped to chromosome 16, 21, and 25; two suggestive QTLs were mapped to chromosome 15 and 16. Four markers associated with these QTLs accounted for 33% of the variation in NFB by single and multiple-marker regression analyses. Two pairs of epistasis interaction between markers were detected. Our results suggested that at least three chromosomes contain factors associated with flowering time for this population with epistasis interactions between chromosomes. This research represent the first flowering time QTL mapping in cotton. Makers associated with flowering time may have the potential to facilitate day neutral conversion of accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DPL61:

Deltapine 61

LOD:

Logarithm of odds

MQM:

Multiple QTL mapping

NFB:

Node of first fruiting branch

T701:

Texas accession 701

References

  • Barrett J (2002) Association studies. In: Camp NJ, Cox A (eds) Quantitative trait loci-methods and protocols. Humana Press, Totowa, NJ, pp 3–12

    Chapter  Google Scholar 

  • Bowman DT (2000) Attributes of public and private cotton breeding programs. J Cotton Sci 4:130–136

    Google Scholar 

  • Börner A, Buck-sorlin GG, Hayes PM, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132

    Article  Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359

    Article  Google Scholar 

  • Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T (2007) A microsatellite-based, gene rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics 176:527–541

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham CL, McCarty JC (2002) Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Sci 42:1841–1847

    Article  Google Scholar 

  • Haley AB, Wilhelm S (1975) Comparative verticillium wilt reaction of wild races of Gossypium hirsutum and hybrids with upland cultivars. In: Brown JM (ed) Proceedings of the beltwide cotton producers conference, New Orleans, LA. 6–8 Jan 1975

  • Han Z, Wang C, Song X, Guo W, Guo J, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439

    Article  PubMed  CAS  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Feng CD, Stewart JM (2005) Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica 144:141–149

    Article  CAS  Google Scholar 

  • He DH, Lin ZX, Zhang XL, Nie YC, Guo XP, Zhang YX, Li W (2007) QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica 153:181–197

    Article  CAS  Google Scholar 

  • Holley RN, Goodman MM (1989) New sources of resistance to southern corn leaf blight from tropical hybrid maize derivatives. Plant Dis 73:562–564

    Article  Google Scholar 

  • Hutchinson JB (1959) The application of genetics to cotton improvement. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenkins JN (1986) Host plant resistance: Advances in cotton. In: Brown JM (ed) Proceedings of the beltwide cotton producers conference, Las Vegas, NV. 4–9 Jan 1986

  • Jiang C, Wright R, Woo S, Delmonte T, Paterson AH (2000) QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor Appl Genet 100:409–418

    Article  CAS  Google Scholar 

  • Koester RP, Sisco PH, Stuber CW (1993) Identification of quantitative trail loci controlling days to flowering and plant height in two near isogenic loci of maize. Crop Sci 33:1209–1216

    Article  Google Scholar 

  • Kohel RJ (1978) Survey of Gossypium hirsutum L. germplasm collection of seed-oil percentage and seed characteristics. USDA Report ARS-S-187

  • Kohel RJ, Richmond TR, Lewis CF (1974) Genetics of flowering response in cotton. VI. Flowering behavior of Gossypium hirsutum L. and G. barbadense L. hybrids. Crop Sci 14:696–699

    Article  Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140

    CAS  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lewis CF, Richmond TR (1957) The genetics of flowering response in cotton. I. Fruiting behavior of Gossypium hirsutum var. marie-galante in a cross with a variety of cultivated American Upland cotton. Genetics 42:499–509

    PubMed  CAS  Google Scholar 

  • Lewis CF, Richmond TR (1960) The genetics of flowering response in cotton. II. Inheritance of flowering response in a Gossypium barbadense cross. Genetics 45:79–85

    PubMed  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Liu S, Cantrell RG, McCarty JC, Stewart JM (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469

    Article  CAS  Google Scholar 

  • Liu WX, Kong FL, Guo ZL, Zhang QY, Peng HR, Fu XQ, Yang FX (2003) An analysis about genetic basis of cotton cultivars in China since 1949 with molecular markers. Acta Genet Sin 30:560–570 (in Chinese, English abstract)

    PubMed  CAS  Google Scholar 

  • Low A, Hesketh J, Muramoto H (1969) Some environmental effects on the varietal node number of the first fruiting branch. Cotton Growing Rev 46:181–188

    Google Scholar 

  • Mauney JR (1986) Vegetative growth and development of fruiting sites. In: Mauney JR, Stewart JM (eds) Cotton physiology. The Cotton Foundation, Memphis, TN, pp 11–28

    Google Scholar 

  • McCarty JC, Jenkins JN (1993) Registration of 79 day-neutral primitive cotton germplasm lines. Crop Sci 33:351

    Article  Google Scholar 

  • McCarty JC, Jenkins JN (2004) Primitive cotton germplasm: yield and fiber traits for 21 day-neutral acessions. Mississippi Agric For Exp Stn Res Rep 23(14):1–6

    Google Scholar 

  • McCarty JC, Jenkins JN, Parrott WL, Creech RG (1979) The conversion of photoperiodic primitive race stocks of cotton to day-neutral stocks. Mississippi Agric For Exp Stn Res Rep 4(19):1–4

    Google Scholar 

  • McCarty JC, Jenkins JN, Tang B (1995) Primitive cotton germplasm: variability for yield and fiber traits. Miss Agric and For Exp Stn Tech Bull 202:8 pp

    Google Scholar 

  • McCarty JC, Jenkins JN, Wu J (2004a) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: I. phenotypic values and variance components. Crop Sci 44:1226–1230

    Article  Google Scholar 

  • McCarty JC, Jenkins JN, Wu J (2004b) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: II. genetic effects and genotypic values. Crop Sci 44:1231–1235

    Article  Google Scholar 

  • McCarty JC, Jenkins JN, Zhu J (1998) Introgression of day-neural genes in primitive cotton accessions: I. Genetic variances and correlations. Crop Sci 38:1425–1428

    Article  Google Scholar 

  • McCarty JC, Wu J, Jenkins JN (2006) Genetic diversity for agronomic and fiber traits in day-neutral accessions derived from primitive cotton germplasm. Euphytica 148:283–293

    Article  Google Scholar 

  • McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM, Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Meredith WR (1991) Contributions of introductions to cotton improvement. In: Shands HL, Weisner LE (eds) Use of plant introductions in cultivar development. Part I. Crop Science Society of America, Madison, WI, p 127–146

    Google Scholar 

  • Meredith WR (2000) Cotton yield progress—why has it reached a plateau. Better Crops 84:6–9

    Google Scholar 

  • Multani DS, Lyon BR (1995) Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38:1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TB, Giband M, Brottier P, Risterucci AM, Lacape JM (2004) Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang CX (2003) QTL analysis of genotype × environment interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Percival AE (1987) The national collection of Gossypium germplasm. Southern Cooperative Serials Bulletin 321:362 pp

    Google Scholar 

  • Qureshi SN, Saha S, Kantety RV, Jenkins JN (2004) EST-SSR: a new class of genetic markers in cotton. J Cotton Sci 8:112–123

    CAS  Google Scholar 

  • Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144

    Article  CAS  Google Scholar 

  • Rana MK, Bhat KV (2005) RAPD markers for genetic diversity study among Indian cotton cultivars. Curr Sci 88:1956–1961

    Google Scholar 

  • Ray LL, Richmond TR (1966) Morphological measures of earliness of crop maturity in cotton. Crop Sci 6:527–531

    Article  Google Scholar 

  • Reddy OUK, Pepper AE, Ibrokhim A, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113

    Google Scholar 

  • Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder NL, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc. (1999) SAS software version 9.0. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Shen X, Guo W, Zhu X, Yuan Y, Yu JZ, Kohel RJ, Zhang T (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed 15:169–181

    Article  CAS  Google Scholar 

  • Shen X, Zhang T, Guo W, Zhu X, Zhang X (2006) Mapping fiber and yield QTLs with main, epistatic, and QTL × enviroment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66

    Article  CAS  Google Scholar 

  • Van Esbroeck GA, Bowman DT, Calhoun DS, May OL (1998) Changes in the genetic diversity of cotton in the USA from 1970 to 1995. Crop Sci 38:33–37

    Article  Google Scholar 

  • Van Esbroeck GA, Bowman DT, May OL, Calhoun DS (1999) Genetic similarity indices for ancestral cotton cultivars and their impact on genetic diversity estimates of modern cultivars. Crop Sci 39:323–328

    Google Scholar 

  • Van Ooijen J, Voorrips RE (2001) JionMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands

    Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen, the Netherlands

    Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Waddle BM, Lewis CF, Richmond TR (1961) The genetics of flowering response in cotton. III. Fruiting behavior of Gossypium hirsutum race latifolium in a cross with a variety of cultivated American Upland cotton. Genetics 46:427–437

    PubMed  CAS  Google Scholar 

  • Wang B, Guo W, Zhu X, Wu Y, Huang N, Zhang T (2006a) QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica 152:367–378

    Article  CAS  Google Scholar 

  • Wang K, Song X, Han Z, Guo W, Yu J, Sun J, Pan J, Kohel R, Zhang T (2006b) Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet 113:73–80

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 99:1025–1032

    Article  Google Scholar 

  • Zhong M, McCarty JC, Jenkins JN, Saha S (2002) Assessment of day-neutral backcross populations of cotton using AFLP markers. J Cotton Sci 6:97–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. McCarty.

Additional information

Contribution of USDA-ARS in cooperation with the Mississippi Agric. and Forestry Exp. Stn. Journal paper J-11131 of Mississippi Agric. and Forestry Exp. Stn. Mention of trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by USDA, ARS and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., McCarty, J.C., Jenkins, J.N. et al. QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701. Euphytica 163, 113–122 (2008). https://doi.org/10.1007/s10681-007-9613-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9613-1

Keywords

Navigation