Skip to main content
Log in

Discovery and detection of single nucleotide polymorphism (SNP) in coding and genomic sequences in chickpea (Cicer arietinum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chickpea genetic mapping has been hampered by insufficient amplicon length polymorphism for sequence based markers. To develop an alternative source of polymorphic markers, we determined naturally abundant single nucleotide polymorphism (SNP) in coding and genomic regions between FLIP 84-92C (C. arietinum) and PI 599072 (C. reticulatum) and identified an inexpensive method to detect SNP for mapping. In coding sequences, 110 single base changes or substitutions (47% transitions and 53% transversions) and 18 indels were found; while 50 single base changes (68% transitions and 33% transversions) and eight indels were observed in genomic sequences. SNP frequency in coding and genomic regions was 1 in 66 bp and 1 in 71 bp, respectively. In order to effectively use this high frequency of polymorphism, we used Cleaved Amplified Polymorphic Site (CAPS) and derived CAPS (dCAPS) marker systems to identify a restriction site at SNP loci. In this study, we developed six CAPS and dCAPS markers and fine mapped QTL1, a region previously identified as important for ascochyta blight resistance. One of the CAPS markers from a BAC end was identified to account for 56% of the variation for ascochyta blight resistance in chickpea. Conversion of naturally abundant SNPs to CAPS and dCAPS for chickpea mapping, where absence of amplicon length polymorphism is a constraint, has potential to generate high-density maps necessary for map-based cloning and integration of physical and genetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucloetide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10:1249–1258

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet—a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang HS, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, Stephenson P, Collins A, Kirby J, Smith JB, Gale MD (1999) Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor Appl Genet 99:192–198

    Article  CAS  Google Scholar 

  • Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 17:5–16

    Google Scholar 

  • Ching A, Rafalski A (2002) Rapid genetic mapping of ESTs using SNP pyrosequencing and indel analysis. Cell Mol Biol Lett 7:803–810

    PubMed  CAS  Google Scholar 

  • Ching ADA, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski A (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Cho S, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285–292

    Article  CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    Article  PubMed  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun JH, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe B, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Collard BC, Pang EC, Ades PK, Taylor PW (2003) Preliminary investigation of QTLs associated with seedling resistance to ascochyta blight from Cicer echinospermum, a wild relative of chickpea. Theor Appl Genet 107:719–729

    Article  PubMed  CAS  Google Scholar 

  • Corum T, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small amount of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • FAOSTAT (2005) http://faostat.fao.org/faostat/collections?subset=agriculture

  • Flandez-Galvez H, Ford R, Pang ECK, Taylor PWJ (2003) An intraspecific linkage map of the chickpea (Cicer arietinum L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447–1456

    PubMed  CAS  Google Scholar 

  • Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite-site markers for chickpea (Cicer arietinum L.). Genome 42:210–217

    Article  PubMed  Google Scholar 

  • Jander G, Norris SR, Rounsley SD. Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  PubMed  CAS  Google Scholar 

  • Kahl G, Mast A, Toke N, Shen R, Boom DVD (2004) SNPs: detection techniques and their potential for genotyping and genome mapping. In: The handbook of plant genome mapping. Wiley-VCH Verlag GmbH & Co, pp 75–107

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Konovalov F, Toshchakova E, Gostimsky S (2005) A caps marker set for mapping in linkage group iii of pea (Pisum sativum l.) Cell Mol Biol Lett 10:163–171

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. Theor Appl Genet 110:492–510

    Article  PubMed  CAS  Google Scholar 

  • Lopez C, Pie’gu B, Cooke R, Delseny M, Tohme J, Verdier V (2005) Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz). Theor Appl Genet 110:425–431

    Article  PubMed  CAS  Google Scholar 

  • Manly KF (1998) User’s manual for map manager classic and map manager QT

  • Morales M, Roig E, Monforte AJ, Arús P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360

    Article  PubMed  CAS  Google Scholar 

  • Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y (2002) Search for and analysis of single nucleotide polymorphism (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171

    Article  PubMed  CAS  Google Scholar 

  • Neff M, Neff J, Chory J, Pepper A (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thalaiana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for maker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rajesh PN, Gupta VS, Ranjekar PK, Muehlbauer FJ (2003) Functional genome analysis using DDRT with respect to ascochyta blight disease in chickpea. Int Chickpea Pigeonpea Newsl 10:35–37

    Google Scholar 

  • Rajesh PN, Coyne C, Meksem K, Sharma KD, Gupta V, Muehlbauer FJ (2004) Construction of a HindIII bacterial artificial chromosome library and its use in identification of clones associated with disease resistance in chickpea. Theor Appl Genet 108:663–669

    Article  PubMed  CAS  Google Scholar 

  • Rakshit S, Winter P, Tekeoglu M, Juarez Muñoz J, Pfaff T, Benko-Iseppon AM, Muehlbauer FJ, Kahl G (2003) DAF marker tightly linked to a major locus for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Euphytica 132:23–30

    Article  CAS  Google Scholar 

  • Rodi CP, Darnhofer-Patel B, Stanssens P, Zabeau M, van den Boom D (2002) A strategy for the rapid discovery of disease markers using the MassARRAY system. BioTechniques 32:62–69

    Google Scholar 

  • Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL et al (2001) A map of human genome. sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  PubMed  CAS  Google Scholar 

  • Santra DK, Tekeoglu M, Ratnaparkhe MB, Gupta VS, Ranjekar PK, Muehlbauer FJ (2000) Identification and mapping of QTLs conferring resistance to ascochyta blight in chickpea. Crop Sci 40:1606–1612

    Article  CAS  Google Scholar 

  • Schneider K, Weisshaar B, Borchardt DC, Salamani F (2001) SNP frequency and allele haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74

    Article  CAS  Google Scholar 

  • Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.) Theor Appl Genet 112:1416–1428

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Winter P, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Appl Genet 105:847–854

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L). Mol Gen Genet 262:90–101

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon HB, Ratnaparkhe M, Tullu A, Sonnante G, Ptaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum X C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

PNR wishes to thank McKnight Foundation, USA for financial support. The authors thank Jackie Corona and Sheri Babb for their help in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Rajesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajesh, P.N., Muehlbauer, F.J. Discovery and detection of single nucleotide polymorphism (SNP) in coding and genomic sequences in chickpea (Cicer arietinum L.). Euphytica 162, 291–300 (2008). https://doi.org/10.1007/s10681-008-9675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9675-8

Keywords

Navigation