Skip to main content
Log in

Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We cloned complementary DNA (cDNA) encoding aquaporin 1 (AQP1) and arginine vasotocin receptor (AVT-R) from gill and kidney tissue of the black porgy (Acanthopagrus schlegeli), respectively. Black porgy AQP1 cDNA consists of 786 base pairs (bp) and encodes a protein of 261 amino acids, and AVT-R partial cDNA consists of 606 bp. To investigate the osmoregulatory abilities of black porgy in different salinities (35‰ seawater, SW, 10‰ SW, freshwater, FW), we examined the expression of AQP1 and AVT-R mRNA in osmoregulatory organs using the reverse transcription polymerase chain reaction (RT-PCR). AQP1 mRNA levels increased in the gill and intestine during FW acclimation, and the mRNA expression in the kidney was greatest in 10‰ SW and then decreased in FW. On the other hand, AVT-R mRNA was expressed in the gill only in 10‰ SW, while it increased in the kidney in 10‰ SW and then decreased in FW. Thus, the expression of these mRNAs increased in hypoosmotic environments. These results suggest that AQP1 and AVT-R genes play important roles in hormonal regulation in osmoregulatory organs, thereby improving the hyperosmoregulatory ability of black porgy in hypoosmotic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acher R (1996) Molecular evolution of fish neurohypophysial hormones: neutral and selective evolutionary mechanisms. Gen Comp Endocrinol 102:157–172

    Article  PubMed  CAS  Google Scholar 

  • Acher R, Chauvet J (1995) The neurohypophysial endocrine regulatory cascade: precursors, mediators, receptors, effectors. Front Neuroendocrin 16:237–289

    Article  CAS  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463-F476

    PubMed  CAS  Google Scholar 

  • Agre P, King LS, Yasui M, Guggio WB, Ottersen OP, Fujiyoshi Y (2002) Aquaporin water channels-from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  • Amer S, Brown JA (1995) Glomerular actions of arginine vasotocin in the in situ perfused trout kidney. Am J Physiol 269:R775–R780

    PubMed  CAS  Google Scholar 

  • Aoki M, Kaneko T, Katoh F, Hasegawa S, Tsutsui N, Aida K (2003) Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J Exp Biol 206:3495–3505

    Article  PubMed  Google Scholar 

  • Balment RJ, Wrane JM, Tierney M, Hazon N (1993) Arginine vasotocin and fish osmoregulation. Fish Physiol Biochem 11:189–194

    Article  CAS  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  PubMed  CAS  Google Scholar 

  • Bentley PJ (2002) Endocrines and osmoregulation. Zoophysiology, vol 39. Springer, Berlin

    Google Scholar 

  • Bone Q, Marshall NB, Blaxter JHS (1995) Biology of fishes, 2nd edn. Blackie Academic and Professional, London

    Google Scholar 

  • Chang YJ, Hur JW (1999) Physiological responses of grey mullet (Mugil cephalus) and Niletilapia (Oreochromis niloticus) by rapid changes in salinity of rearing water. J Kor Fish Soc 32:310–316

    Google Scholar 

  • Chang YJ, Min BH, Choi CY (2007) Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological response during freshwater acclimation. Comp Biochem Physiol B 147:122–128

    Article  PubMed  CAS  Google Scholar 

  • Cho YM, Shin J, Sohn YC (2006) Gene expression levels of growth hormone, Prolactin and their receptors of olive flounder Paralichthys olivaceus by salinity changes. J Kor Fish 39:326–332

    CAS  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425

    Article  PubMed  CAS  Google Scholar 

  • Cleveland PH Jr, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology. vol. I: excretion, ionic regulation and metabolism. Academic Press, New York, pp 91–239

    Google Scholar 

  • Connolly DL, Shanahan CM, Weissberg PL (1998) The aquaporins. A family of water channel proteins. Int Biochem Cell Biol 30:169–172

    Article  CAS  Google Scholar 

  • Conklin DJ, Chavas A, Duff DW, Weaver L, Zhang Y, Olson KR (1997) Cardiovascular effects of arginine vasotocin in the rainbow trout Oncorhynchus mykiss. J Exp Biol 200:2821–2832

    PubMed  CAS  Google Scholar 

  • Cutler CP, Cramb G (2002) Branchial expression of aquaporin 3 (AQP3) homologue is downregulated in the European eel Anguilla Anguilla following seawater acclimation. J Exp Biol 205:2643–2651

    PubMed  CAS  Google Scholar 

  • Cutler CP, Martinez A-S, Cramb G (2007) The role of aquaporin 3 in teleost fish. Comp Biochem Physiol 148: 82–91

    Article  CAS  Google Scholar 

  • Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:25079–25082

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (1993) Osmotic and ionic regulation. In: Evans DH (Ed) The physiology of fishes. CRC Press, Boca Raton, pp 315–341

  • Geering K (1990) Subunit assembly and functional maturation of Na,K-ATPase. J Membr Biol 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Harding KE, Warne JM, Hyodo S, Balment RJ (1997) Pituitary and plasma AVT content in the flounder (Platichthys flesus). Fish Physiol Biochem 17:357–362

    Article  CAS  Google Scholar 

  • Hatakeyama S, Yoshida Y, Tani T, Koyama Y, Nihei K, Ohshiro K, Kamiie JI, Yaoita E, Suda T, Hatakeyama K (2001) Cloning of a new aquaporin (aqp10) abundantly expressed in duodenum and jejunum. Biochem Biophys Res Commun 287:814–819

    Article  PubMed  CAS  Google Scholar 

  • Henderson IW, Wales NAM (1974) Renal diuresis and antidiuresis after injections of arginine vasotocin in the fresh water eel (Anguilla anguilla L). J Endocrinol 61:487–500

    Article  PubMed  CAS  Google Scholar 

  • Hirata T, Kaneko T, Ono T, Nakazato T, Furukawa N, hasegawa S, Wakabayashi S, Shigekawa M, Chang M-M, Romero M, Hirose S (2003) Mechanism of acid adaptation of a fish living in a pH3.5 lake. Am J Physiol 284:R1199–R1212

    CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not glycerol. Biochem Biophys Res Commun 244:268–274

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Susuki M, Imai M (2000) Molecular cloning of a new aquaporin superfamily in mammals. In: Hohmann S, Neilsen S (eds) Molecular biology and physiology of water and solute transport. Kluwer Academic/Plenum Publishers, New York, London, pp 123–126

    Google Scholar 

  • Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F, Sasaki S (1997) Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J Biol Chem 272:20782–20786

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cell. Proc Natl Acad Sci USA 91:6269–6273

    Article  PubMed  CAS  Google Scholar 

  • Karnaky JK Jr (1998) Osmotic and ionic regulations. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, New York, pp 157–176

    Google Scholar 

  • King LS, Yasui M, Agre P (2000) Aquaporins in health and disease. Mol Med Today 6:60–65

    Article  PubMed  CAS  Google Scholar 

  • Kitajima C, Tsukashima Y (1983) Morphology, growth and low temperature and low salinity tolerance of sparid hybrids (Sparus sarba, Acanthopagrus schlegeli). Jap J Ichthyol 30:275–283

    Google Scholar 

  • Kinoshita I, Takana M (1990) Differentiated spatial distribution of larvae and juveniles of the two sparids, red and black sea bream in Shijiki Bay. Nippon Suisan Gakkai Shi 56:1807–1813

    Google Scholar 

  • Kulczykowska E (2001) Responses of circulating arginine vasotocin, isotocin, and melatonin to osmotic and disturbance stress in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 24:201–206

    Article  CAS  Google Scholar 

  • Le Mevel J-C, pamantung T-F, Mabin D, Vaudry H (1993) Effect of central and peripheral administration of arginine vasotocin and related neuropeptides on blood pressure and heart rate in conscious trout. Brain Res 610:82–89

    Article  PubMed  CAS  Google Scholar 

  • Lignot JH, Cutler CP, Hazon N, Cramb G (2002) Water transport and aquaporins in the European eel (Anguilla Anguilla). Symp Soc Exp Biol 49–59

  • Ma T, Verkman AS (1999) Aquaporin water channels of gastrointestinal physiology. J Physiol 276:F331–F339

    Google Scholar 

  • Madsen SS, Bern HA (1992) Antagonism of prolactin and growth hormone: impact on seawater adaptation in two salmonids, Salmo trutta and Oncorhynchus mykiss. Zool Sci 9:775–784

    CAS  Google Scholar 

  • Mahlmann S, Meyerhof W, Hausmann H, Heierhorst J, Schönrock C, Zwiers H, Lederis K, Richter D (1994) Structure, function, and phylogeny of [Arg8] vasotocin receptors from teleost fish and toad. Proc Natl Acad Sci USA 91:1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Mancera JM, Perez-Figares JM, Fernandez-Llebrez P (1993) Osmoregulatory responses to abrupt salinity changes in the euryhaline gilthead sea bream (Sparus aurata L.). Comp Biochem Physiol A 106:245–250

    Article  Google Scholar 

  • Mancera JM, Carrion RL, Riodel MDM (2002) Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95–103

    Article  CAS  Google Scholar 

  • Martinez A-S, Cutler CP, Wilson GD, Phillips CPC, Hazon N, Cramb G (2005) Cloning and expression of three aquaporin homologues from the European eel (Anguilla anguilla): effects of seawater acclimation and cortisol treatment on renal expression. Biol Cell 97:615–627

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Aoki T, Hagiwara H, Takata K (2002) Aquaporins: a water channel family. Anat Sci Int 77:85–93

    Article  PubMed  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in fish. Am Zool 282:290–300

    Google Scholar 

  • Min BH, Kim BK, Hur JW, Bang IC, Byun SK, Choi CY, Chang YJ (2003) Physiological responses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli). Korean J Ichthyol 15:224–231

    Google Scholar 

  • Min BH, Choi CY, Chang YJ (2005) Comparison of physiological conditions on black porgy, Acanthopagrus schlegeli acclimated and reared in freshwater and seawater. J Aquacult 18:37–44

    CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci USA 90:7275–7279

    Article  PubMed  CAS  Google Scholar 

  • Perrot MN, Carrick S, Balment RJ (1991) Pituitary and plasma arginine vasotocin levels in teleost fish. Gen Comp Endocrinol 83:68–74

    Article  Google Scholar 

  • Pickford GE, Phillips JG (1959) Prolactin, a factor in promoting survival of hypophysectomized killifish in fresh water. Nature 228:378–379

    Article  Google Scholar 

  • Pierson PM, Guibboline ME, Mayer-Gostan N, Lahlou B (1995) ELISA measurements of vasotocin and isotocin in plasma and pituitary of the rainbow trout: effect of salinity. Peptides 16:859–865

    Article  PubMed  CAS  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Kimura R, Tagawa M (1991) A thyroxin surge during development of black sea bream larvae and its ecological implication in inshore migration. Nippon Suisan Gakkai Shi 57:1827–1832

    CAS  Google Scholar 

  • Tse WKF, Au DWT, Wong CKC (2006) Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels. Biochem Biophys Res Commun 346:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS (2002) Aquaporin water channels and endothelial cell function. J Anat 200:617–627

    Article  PubMed  CAS  Google Scholar 

  • Virkki LV, Cooper GJ, Boron WF (2001) Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. Am J Physiol 81:R1994–R2003

    Google Scholar 

  • Warne JM (2001) Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus. Gen Comp Endocrinol 122:312–319

    Article  PubMed  CAS  Google Scholar 

  • Warne JM, Balment RJ (1995) Effect of acute manipulation of blood volume and osmolality on plasma [AVT] in seawater flounder. Am J Physiol 269:R1107–R1112

    PubMed  CAS  Google Scholar 

  • Warne JM, Balment RJ (1997) Changes in plasma arginine vasotocin (AVT) concentration and dorsal aortic blood pressure following AVT injection in the teleost, Platichthys flesus. Gen Comp Endocrinol 105:358–364

    Article  PubMed  CAS  Google Scholar 

  • Warne JM, Bond H, Weybourne E, Sahajpal V, Lu W, Balment RJ (2005) Altered plasma and pituitary arginine vasotocin and hypothalamic procasotocin expression in flounder (Paltichthys flesus) following hypertonic challenge and distribution of vasotocin receptors within the kidney. Gen Comp Endocrinol 144:240–247

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kaneko T, Aida K (2005) Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. J Exp Biol 208:2673–2682

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Verkman AS (1997) Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope tagged constructs in Xenopus oocytes. J Biol Chem 272:16140–16146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-003-F00042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Young Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, K.W., Kim, N.N. & Choi, C.Y. Cloning and expression of aquaporin 1 and arginine vasotocin receptor mRNA from the black porgy, Acanthopagrus schlegeli: effect of freshwater acclimation. Fish Physiol Biochem 34, 185–194 (2008). https://doi.org/10.1007/s10695-007-9175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-007-9175-0

Keywords

Navigation